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ABSTRACT 

Concrete rheology is important because it affects the workability and uniformity of fresh 

concrete as well as the properties of the hardened concrete. In this dissertation, new models 

for predicting mortar and concrete rheological properties were developed. 

The present study includes both experimental and modeling work. In the experimental study, 

mortar and concrete specimens were prepared with consideration of three factors: paste or 

mortar rheology, aggregate properties, and aggregate content. The aggregate properties were 

characterized with the uncompacted void content and friction angle. Effects of these 

aggregate properties on mortar and concrete rheology were studied using a Brookfield and 

portable IBB rheometer, respectively. Using the artificial neural network as a tool to analyze 

the test data, the relative degree of importance of the factors that influence mortar and 

concrete rheological behavior were evaluated, and the important factors were then considered 

in the proposed models. The experimental results indicated that aggregate with low 

uncompacted void content generally provided the concrete with low yield stress and viscosity, 

while aggregate with high friction angle generally resulted in high yield stress and viscosity. 

In the modeling study, concrete was considered as a two-phase material, consisting of mortar 

and coarse aggregate. Mortar and concrete rheological behavior was assumed mainly 

controlled by (1) the excess paste/mortar thickness of fine/coarse aggregate, and (2) the 

friction between the aggregate particles. The excess paste/mortar thickness and aggregate 

friction were calculated and used to develop functions that relate to mortar and concrete 

rheology. Statistical analyses were performed on the test data to obtain specific relationships 

between the concrete rheology parameters and the paste/mortar properties as well as the 

excess paste/mortar thickness in the concrete. The modeling results demonstrated that the 

predicted concrete rheological parameters had very good correlations with the measured 

results. It is expected that the developed models can be used not only for concrete rheology 

prediction but also for designing concrete mixtures with improved rheology. 

Keywords: aggregate, mortar, concrete, rheology, modeling 
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CHAPTER 1. INTRODUCTION 

In present study, the rheology of a series of paste, mortar, and concrete mixtures with 

different aggregates are measured by paste/mortar and concrete rheometers, respectively. 

Based on the experimental results, two-phase theory, and the excess thickness theory, new 

models has been developed to predict mortar and concrete rheology considering the effect of 

aggregate including size, gradation, shape and surface texture. The developed models can 

directly help the concrete industry to predict concrete rheology from mix design, and more 

importantly, to design concrete mixtures to obtain desired flowability. 

1.1 Background 

Fresh concrete properties, especially workability, significantly affect transporting, placing, 

and compacting concrete; thus, these properties have significant effects on the quality and 

cost of concrete construction. They also potentially determine certain hardened concrete 

properties, such as uniformity, strength and durability. One particularly important fresh 

concrete property is workability. Based on the American Concrete Institute (ACI ) (ACI 

Committee 116, 2000), workability is defined as "the property of freshly mixed concrete or 

mortar that determines the ease with which it can be mixed, placed, consolidated, and 

finished to a homogenous condition". Concrete must have proper flowability, or rheology, in 

order to obtain desirable workability. The rheology of concrete is a quantitative property that 

describes concrete deformation and flow. Concrete rheology also provides important 

information on other aspects of concrete workability, such as segregation resistance. 

Research has shown that a suitable range of rheology is helpful to prevent segregation 

(Assaad et al., 2004; Petrou et al., 2000a, 2000b). The rheology study can also determine the 

design in pumped concrete. The fluidity of the vibrated concrete, determined from the rate of 

efflux from the pipe, is controlled by the peak velocity of the vibration and influenced by the 

rheology of the unvibrated concrete (Banfill et al., 1999). 

Concrete is one of the most widely used building materials. The importance of studying 

concrete rheology has been understood for many years, because the ease of flow and 
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placement can significantly reduce costs and allow more flexibility in architectural and 

structural design. The rheology of concrete can be affected by different factors: mix 

proportions, characteristics of the cement, aggregate properties, amount and type of 

admixtures, time, temperature, and mixing condition. Among all these factors, aggregate 

properties are the most important because the aggregate normally occupies up to 70-80 

percent of the total concrete volume of concrete. The flowability of concrete can be 

significantly changed by using different aggregates. The aggregate directly affects the 

flowability of concrete through interparticle forces (such as interlocking and friction of solid 

particles) and the movement of solid and liquid phases inside fresh concrete mixtures. 

Several factors, such as size, type, gradation and texture of aggregates, also affect the 

properties of fresh concrete. The study of the effect of aggregate on concrete rheology is still 

very limited, and no efficient concrete rheology model considering the effect of aggregate 

had been developed so far. 

Various models have been developed to predict the rheological parameters of concrete from 

the composition, but the application of existing models are often restricted due to one or 

more of the following reasons: 

o Some models are empirical models, which are not suitable for common situations. Most 

of the existing models do not have enough theoretical analysis or the derivation is too 

complicated, involving a tremendous and impractical amount of calculation and computer 

simulation. 

o Some of the models are not directly related to rheological parameters, due to the 

limitation of rheology measurement equipment. 

o Some of the models just relate to one parameter of rheology, which is insufficient to 

reflect the flowability of concrete. 

o Aggregate properties, including shape and texture, are rarely included in the models. 
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1.2 Objectives 

The goal of this study is to develop a model to predict concrete rheological properties based 

on paste rheology, aggregate properties and mix design parameters. Three objectives of 

present research are: 

1. To determine parameters that characterize aggregate properties; 

2. To quantitatively study aggregate effect on concrete rheology; and 

3. To develop rheology model for prediction of concrete rheological behavior. 

1.3 Research Approach 

In order to ensure a successful model, the overall research strategy schematically outlined 

below in Figure 1-1 was used in present research. 

ANN Study 

Statistic Analysis 

Aggregate Characterization Mortar and Concrete Mix Design 

Mortar and 
Concrete 
Rheology 

Measurement 

Final Mortar and Concrete Rheology Model 

Mortar and Concrete Rheology 
Modeling Approach 

Effects of Aggregate Properties on 
Mortar and Concrete Rheology 

Important Mortar and Concrete 
Mix Design Parameters 

Calculations of 
Excess 

Thickness and 
Friction of Mortar 

and Concrete 

Figure 1-1 Flowchart of concrete rheology model development 

Different mortar and concrete materials, including type I/II Portland cement, fine aggregate 

(type, size and gradation), and coarse aggregate (size and gradation) were selected for this 

study. According to factorial mix design, specimens with different mortar and concrete mixes 
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were prepared in a consideration of three factors: paste or mortar rheology properties, 

aggregate gradation and aggregate content. Different sizes (fineness), gradations, shapes and 

surface textures of fine and coarse aggregate were characterized according to both 

uncompacted void content test and friction angle test. The effect of aggregate properties of 

on mortar and concrete rheological properties were measured by a Brookfield and a portable 

IBB rheometer, respectively. Based on the test data, the importance of factors that influence 

mortar and concrete rheology were evaluated by artificial neural network (ANN) analysis. 

According to the excess paste theory and consider concrete as a two-phase material of mortar 

and coarse aggregate, the excess paste thickness of fine aggregate, and excess mortar 

thickness of coarse aggregate were calculated based on mortar and concrete mix design and 

aggregate characterization. The rheology contributed from spacing and paste or mortar 

rheology was then calculated based on microstruction of mortar and concrete related to 

excess thickness. The rheology contributed from aggregate friction was calculated based on 

the measured fine aggregate friction angle. Together with the measured matrix (paste or 

mortar) rheology from identical mix design and by comparison with actual measured mortar 

and concrete rheology, the mortar and concrete rheology model was finalized according to 

statistical regression analysis. 

1.4 Scope of Dissertation 

Nine chapters, including the experimental work and modeling, are presented in this 

dissertation. The experimental studies include aggregate characterization and rheology 

measurements of paste, mortar, and concrete. The modeling includes the rheology models for 

both mortar and concrete. 

Chapter 2 contains a literature review, which serves to provide the necessary background and 

terminology on concrete rheology. The utilization of different equipment for concrete 

workability measurement, especially the rheometer, will be summarized. The factors that 

influence concrete rheology, especially aggregate effect, will also be reviewed. This section 

will further provide a summary of current models to predict concrete rheology from mix 

composition, especially considering the aggregate effects. 
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In Chapter 3, the laboratory work is described. The lab methods, including the measurement 

of aggregate properties, cement paste, mortar and concrete rheology, are presented. The 

materials information for the different mixtures are all presented in this chapter as well. All 

of the test procedures are listed and the experimental program design is described. 

Chapter 4 summarizes the information collected during the aggregate testing phase of this 

study. Fine aggregate and coarse aggregate properties are presented and analyzed. 

Chapter 5 presents the experimental study of the effect of water-to-cement ratio (w/c) and 

mixing procedure on cement paste rheological performance. Statistical equations for the 

effect of w/c on rheological parameters of cement pastes are also developed. 

Chapter 6 concentrates on the mortar rheology study. Two kinds of fine aggregate (limestone 

and riversand) and a wide range of w/c and sand-to-cement ratio (s/c) for mortar mix design 

are used. The effect of fine aggregate size, type and gradation are studied through the 

rheology tests. 

In Chapter 7, the results of the concrete rheology study are presented. In this chapter, coarse 

aggregate proportion, size and gradation are studied using the concrete rheometer and the 

slump test. 

In Chapter 8, models are developed to predict mortar and concrete rheology from aggregate 

properties. Certain parameters, including excess paste and mortar thickness and aggregate 

friction angle, are considered in the model. Theoretical and statistical analysis is used during 

this stage. 

Finally, Chapter 9 provides a summary of this research, offers overall conclusions from this 

study, and provides recommendations for future research. 

Eight appendices are included at the end of the dissertation, which contain some additional 

results obtained during this study and the ANN and statistical analysis used in the model 

development stages. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

Concrete is a composite material composed of a coarse granular material (the aggregate) 

embedded in a matrix of material (the cement paste) that fills the space between the 

aggregate particles and glues them together. Fresh concrete properties, such as workability, 

are important mainly because they can affect the choice of equipment for handling and 

consolidation and also influence the properties of hardened concrete. 

Concrete workability is often used to describe different aspects of fresh concrete, such as: 

consistency, flowability, mobility, pumpability, compactibility, fmishability, and harshness. 

These terms are qualitative and subjective, and therefore the term of concrete rheology was 

applied to describe concrete flowability. 

Gjorv (1998) reported that the measurement of the rheological parameters could be used to 

evaluate the flowability and the compatibility of the fresh concrete. Yen et al. (1999) found 

that the application of a rheological method could provide more stable results than any other 

test method in describing the flowability of concrete. Noguchi et al. (1999) had also 

successfully used a rheological approach to assess the ability of self-consolidating concrete 

(SCC) to pass between reinforcing bars according to the clearance between them, the volume 

of aggregate and the rheological properties of matrix. Martys and Ferraris (2003) used 

dissipative particle dynamics (DPD) models to simulate the complex concrete flow inside a 

coaxial rheometer and between rebars. 

Viscosity is an important rheological parameter in determining the tendency for coarse 

aggregates to segregate (Tang et al., 2001). In general, fresh concrete made with mortar with 

high viscosity may reduce flowability, but low viscosity may cause aggregate segregation. 

The fact that the viscosity of concrete can be directly related to the resistance to segregation 

is extremely important in SCC. A suitable range of viscosity is required to produce SCC 

(Assadd et al., 2004; Bonen and Shah, 2005). Saak recommended that there should be a 
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rheological self-flow zone (SFZ), which can be determined by the theoretical segregation 

limit (Saak et al., 2001). A numerical approach has also been developed to determine 

viscosity-dependent segregation in fresh concrete (Bilgil et al., 2005). Rheology parameters 

can also be helpful in SCC design when considering the segregation effects. Petrou et al. 

(2000a) studied the effect of mortar rheology on aggregate settlement. Ravindrarajah et al. 

(2003) found that partially replacing aggregate with fly ash could produce SCC with low 

segregation potential. Ho et al. (2002) showed that limestone powder can be successfully 

used to control the segregation potential and deformability of fresh SCC, while a higher 

dosage of superplasticizer was used to achieve similar flow properties. 

Banfill et al. (1999) used the parameter of viscosity to determine fluidity of concrete in pump 

concrete, and the relationship between the rheology of unvibrated fresh concrete and its flow 

under vibration in a vertical pipe apparatus was established. Concrete rheology can also be 

used in some special applications; for example, Pfeuffer and Kusterle (2001) established a 

correlation between the rheological characteristics and the rebound of dry-mix shotcrete, 

which allowed a simple, fast assessment to be made of the effect of individual admixtures or 

additives in minimizing rebound in the laboratory before conducting any spray experiments 

at construction site. 

A literature review focuses on the factors affecting concrete rheology (especially aggregate 

effects), concrete rheology measurement and models is presented in this chapter. Proposed 

factors and theories usable for a modeling study are found at the end of this chapter. 

2.2 Fundamentals of Concrete Rheology 

2.2.1 Basic Principles of Rheology 

Rheology is the science of the deformation and flow of matter, and the emphasis on flow 

means that it is concerned with the relationships between stress, strain, rate of strain, and 

time. Concrete in its fresh state can be considered as a fluid and therefore the basic principles 

of rheology can be applied to this material (Barnes et al., 1989). 
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The simplest fluid is one that obeys Newton's law of viscous flow, which can be described 

as: 

T  =  T j y  Equation 2-1 

In this equation r is the shear stress (Pa), rj  is the coefficient of viscosity (Pa s), and f  is the 

rate of shear (shear rate) or the velocity gradient (s™1). 

The flow behavior of any fluid requires the measurement of the relationship between shear 

stress and shear strain rate of the material, which is normally called the flow curve. As shown 

in Figure 2-1 (a), the Newtonian liquid described in Equation 2-1 can be represented with a 

plot of the shear rate versus the shear stress that has a straight line passing through the origin, 

with a slope of r/. 

To, Yield stress V) 

$ 
•C 
« 

Viscosity 

Shear strain rate 

I 

I 
.c 
(/> 

Viscosity 

Shear strain rate 

(a) Newtonian model (b) Bingham model 

Figure 2-1 Newtonian model and Bingham model 

For a very diluted suspension of solids in a liquid, there is no interparticle force; and the 

effect of small increases in the amount of suspended solid is merely to increase the 

coefficient of viscosity. Nevertheless, concrete has to be considered as a very concentrated 

suspension, in which the volume ratio of solids-to-water would be as high as around 4.5:1. 

For such concentrated materials, there are forces acting between the particles. This does not 

merely change the viscosity, but actually changes the type of flow. Tattersall and Banfill 

(1983) carried out systematic investigations in the rheology of concrete. They found that 
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there was a linear relationship between torque and the rotation speed of the viscometer after a 

certain torque had been exceeded. They stated that concrete flow could be expressed by the 

Bingham model. As seen in Figure 2-1 (b), concrete has a yield stress, which indicate the 

minimum stress to start a flow of a material. The material obeys Bingham model and can be 

written as: 

r = r0 + T j f  Equation 2-2 

In this equation r0 is the yield stress (Pa) and 77 is the plastic viscosity (Pa s). 

Both parameters should be used in order to fully describe the rheology of the materials that 

obeys Bingham's model, because some materials may have the same viscosity but different 

yield stresses or the same yield stress but different viscosities. 
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Shear strain rate 
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Down 
curve 

curve 
V) 

re a> .c 
<n 

Time 

(a) Shear rate vs. time (b) Shear rate vs. shear stress 

Figure 2-2 Thixotrophy behavior and hysteresis loop 

Another important parameter of rheology is thixotrophy. As shown in Figure 2-2, a 

thixotropic fluid undergoes a decrease in viscosity with time, while it is subjected to constant 

shearing. The shear rate was first increased to a certain value, then immediately decreased to 

the starting point. The "down" curve as shown in Figure 2-2 lies beneath "up" curve. This 

"hysteresis loop", the area between the up and down curves (as shown in the shade area in 

Figure 2-2 (b)), is caused by the decrease in the fluid's viscosity with increasing time of 

shearing resulting from the material's structural breakdown. Generally, the larger the 

"hysteresis loop" area, the higher degree that the material structure is broken down (Banfill, 
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2003). Some thixotropic fluids, if allowed to stand undisturbed for a while, can regain their 

initial viscosity, while others can not. This behavior is due to interparticle attraction and 

weak bonds. 

2.2.2 Flow Curve Equations 

A great deal of research has been conducted to study the flow behavior of cementitious 

materials. Figure 2-3 shows the most commonly used types of curves that express the stress 

and shear rate relationship of cementitious materials. 

Shear thickening 
with yield stress Bingham 

Shear thinning 
with yield stress (Z) 

8 
CO Newtonian 
ro 0) Shear thinning 

CO 

Shear thickening 

Shear Strain Rate 

Figure 2-3 Common used flow curves (after Ferraris and de Larrard, 1998) 

As shown in this figure, Newtonian liquid has a constant viscosity. A Bingham material 

needs to overcome the yield stress to initial flow, and its plastic viscosity is also constant. In 

a shear thickening material, viscosity increases continuously with shear rate, while viscosity 

decreases continuously with shear rate. In the material having shear thinning with yield 

stress, viscosity decreases with shear rate once the yield stress has been exceeded. 

The flow curves can be described with various relationships between shear stress and shear 

rate as summarized in Table 2-1. The Power equation can be used to describe shear thinning 

(n<l) or shear thickening (n>l) behavior. The Herschel-Bulkley equation can be used for the 

case of shear thinning or shear thickening with yield stress. 
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Table 2-1 Equations relating shear stress and shear rate 

Model Equation Reference 

Newtonian 

Power equation 

Bingham 

Herschel-Bulkley 

Modified Bingham 

Casson 

Generalized 
Casson 
Papo-Piani 

De Kee 

Yahia-Khayat 

Vom Berg 
Ostwald-De Waele 
Eyring 

Robertson-Stiff 

Atzeni 

Williamson 

Sisko-Ellis 

Shangraw-Grim-
Mattocks 

r = r j f  

t  = Ay" 

T  =  T 0 + T j y  

r = t0 + rjy" '  + Ay"2  

t  —  t 0  +  r / y  +  A y 2  

r = T0 + rjye~a f  

T = Tg+2(^77. 

r = t0 +5sinh"' ( y / C )  

t = ay + B sinh"1 ( j  / C) 

T = a(/ + C/ 

y = ax2  + fix + S 

I = i -r  + T>JÏÏ 

t = ay + by c  (c<l) 

^ = 77,+#"-' 

^ = ^"o + V.X + [1 - exp(-or^)] 

Ferraris, 1999; Papo, 1988 

Ferraris, 1999; 

Ferraris, 1999; Nehdi and Rahman, 
2004 
Ferraris, 1999; Papo, 1988; Nehdi 
and Rahman, 2004 
Ferraris, 1999 
Nehdi and Rahman, 2004 

Papo, 1988; Nehdi and Rahman, 
2004; Papo and Piani, 2004a 
Papo and Piani, 2004a 

Papo and Piani, 2004a 

Yahia and Khayat, 2001 

Yahia and Khayat, 2001 

Ferraris, 1999; Papo, 1988 

Ferraris, 1999; Papo, 1988 

Ferraris, 1999; Papo, 1988; Jones 
and Taylor, 1977 
Ferraris, 1999; Papo, 1988 

Papo, 1988 

Papo, 1988; Atzeni et al., 1985; 
Nehdi, 2004 

Papo, 1988 

Variable definitions: 

T = shear stress (Pa), f = shear rate (s'1), T0 = yield stress (Pa), rj = viscosity (Pa-s), Ty = intercept of 

the asymptote of the flow curve with the T axis (Pa), ïjx = viscosity at infinite shear rate (Pa-s), F = 

parameter which governs the deviation from Binghamian behavior (s~'), A, a, B, b, C, c, K, M, n,, n2, OC, Q'l, 

a2, /? , S — constants 

Several researchers have compared the equations describing flow curves of cementitious 

materials (Atzeni et al., 1985; Papo, 1988; Nehdi and Rahman, 2004). All of the relationships 
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listed in Table 2-1 (except Newton model) used at least two parameters to describe the flow. 

Struble and de Larrard (1998) found that concentrated suspensions such as concrete 

processes yield stress. Those equations that have a term of yield stress (such as the Bingham 

model, Herschel-Bulkley model, and Casson model, etc.) have a physical basis, while some 

equations contain more than two parameters (such as the Herschel-Bulkley equation, which 

has an exponent term "«") without exact physical meanings. 

Different models may only suitable for certain range of material or measurement. Some 

researchers stated that the Herschel-Bulkley model is more suitable than the Bingham model 

for certain concretes like SCC (de Larrard et al., 1998). Atzeni et al. (1985) compared the 

rheological properties of Portland cement pastes using different mathematical models; and he 

found that the best results were obtained with Eyring's equation, Herschel-Bulkley's equation 

and the parabolic equation, while Vom Berg's model only holds for low shears. Jones and 

Taylor (1977) stated that the Robertson-Stiff model might be used to predict the relationship 

for the whole range of w/c considered while the Herschel-Bulkley model can only predict 

shear stress shear and rate data for a limited range of w/c. However, fresh concrete, including 

cement paste and mortar, is most commonly described using the Bingham model because the 

flow of most concrete follows this equation fairly well (Tattersall and Banfill, 1983) and the 

two parameters in Bingham model; yield stress and viscosity, can be measured 

independently. 

Various factors may affect the shape of the flow curve of cementitious materials, including 

testing equipment, testing time, experiment duration and procedure (Shaugliness and Clark, 

1988; Banfill and Saunders, 1981; Roy and Asaga, 1979). The shear thickening phenomenon 

can also occur simultaneously with shear thinning (Vom Berg, 1979). When more networks 

in the material are destroyed, the shear resistance between the flow layers of the material is 

lower. Thus, the apparent viscosity decreases and shear thinning behavior is observed. 
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2.2.3 Rheology of Cement-Based Materials 

Table 2-2 shows the normal range of rheological parameters of cementitious materials based 

on the Bingham model. From cement paste to concrete, the yield stress and plastic viscosity 

increases as the particle size increases. Tattersall and Banfill (1983) pointed out that this was 

because the aggregate could resist stresses without deformation. Since the aggregate occupies 

up to 70-80% of concrete volume, the yield stress of concrete is higher then cement paste 

which has no aggregate inside. Concrete yield stress also increases with aggregate content. 

Due to the increased interparticle contact and surface interlocking, the plastic viscosity of 

concrete increases when the particle size increases. It is also partly due to the incapability of 

the aggregate to be sheared. When concrete is subjected to a shear stress, since the solid 

aggregate particles can not deform, the shear rate within the solid aggregate particles is zero. 

As a result, in order to have a certain shear rate in the whole composite, the shear rate in 

paste is higher compared to the material with just pure cement paste. This higher shear rate 

results in a higher stress and resistance to flow in the paste that in turn accounts for the 

increase in measured plastic viscosity of the bulk material. 

Table 2-2 Rheological parameters of cementitious material (adopted from Banfill, 2003) 

Material Paste Mortar see Flowable Pavement 
Concrete Concrete 

Yield Stress (Pa) 10-100 80-400 50-200 400 500-2000 

Plastic Viscosity (Pa s) 0.01-1 1-3 20-100 20 50-100 

2.3 Test Method Relate to Workability of Concrete 

The choosing of suitable rheology measurement methods is very important, because the 

success of a concrete rheology model in a large degree depends upon whether the test 

methods can completely and accurately reflect the rheology performance of concrete. A large 

number of workability tests have been proposed over the years since the early 20th century. 

Koehler and Fowler (2003) summarized previously developed equipments, and up to 61 

different test methods for measuring concrete workability were described in the report. 



www.manaraa.com

14 

However, most of the test methods are empirical, and only a few of them have been 

incorporated into standards, the rest have received very limited use. 

With the exception of the most widely used slump test, which can only measure the 

consistency of concrete, most of the other tests have in general failed to gain common 

acceptance. Even with the increase in understanding of concrete rheology, the slump test 

remains the predominately used test method for measuring concrete workability. As 

mentioned, concrete workability can be best characterized in terms of the rheological 

parameters in the Bingham equation. The flow of a granular material like concrete is defined 

by at least two parameters for instance yield stress and plastic viscosity as defined by the 

Bingham equation. However, the measurements are not easy to obtain although the theory 

exists. While there are many tests to characterize the flow of concrete, not many give results 

in fundamental units and therefore the measured rheological properties of concretes, using 

different tests, cannot be directly compared. New tests have recently been developed which 

attempt to characterize concrete using a more elementary approach. While not all researchers 

agree on which test is the most appropriate for the wide range of concretes in use today, it is 

generally agreed that tests which can give results in fundamental units which can be used on 

construction site are needed. 

2.3.1 Principles of Workability Measurement 

The term workability is broadly defined, which includes the properties of placing, 

compacting and finishing. No single test method measures all aspects of workability. 

Numerous test methods have been developed since the 1920s, but the principle of measuring 

concrete flow curves in terms of shear stress and shear rate was not established until concrete 

was considered as Bingham material (Tattersall and Banfill, 1983). Many of the new test 

methods developed since the establishment of concrete as a Bingham fluid have attempted to 

measure yield stress and plastic viscosity. The large number of workability test methods can 

be divided into categories based on several different classification schemes. Tattersall (1991) 

broadly splits the assessment of workability into three classes, as shown in Table 2-3. The 

majority of workability test methods fall into Class II and Class III. 
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Table 2-3 Classes of workability measurement (adopted from Tattersall, 1991) 

Examples Definition 

Class I: Workability, Flowability, To be used only in a general 

Qualitative Compactability, Finishability, descriptive way without any attempt 

Pumpability, etc. to quantify 

Class II: Slump, Compacting Factor, Vebe To be used as a simple quantitative 

Quantitative Time, Flow Table Spread, etc. statement of behavior in a particular 

Empirical set of circumstances 

Class III: Viscosity, Mobility, Fluidity, To be used strictly in conformity 

Quantitative Yield Value, etc. with standard definitions 

Fundamental 

In order to properly define the rheology of concrete, both yield stress and viscosity must be 

measured. The existing test methods for concrete can also be divided into two categories as 

shown in Table 2-4 in regard to whether the output of the experiment gives one or two of 

these parameters according to Ferraris (1999). 

In Table 2-4, a single-factor test can measure only one of the factors of rheological 

parameters and therefore provides an incomplete description of workability. For example, the 

slump test only provides information of the yield stress. Two-factor tests, which can measure 

multiple points on the flow curve, normally by varying the shear rate, can provide a more 

complete description of concrete rheology. Single-factor tests are generally intended to be 

simple and rapid; though they do not provide information on both yield stress and viscosity. 

The tradeoff between single-factor tests and two-factor tests is usually that single-factor tests 

are simpler (although they are less complete). Single-factor tests may sometimes be 

appropriate for certain type of concrete mix or a certain application even though the test can 

not fully measure fundamental rheological parameters. Single-factor tests generally fall into 

Class II of Tattersall's scheme, which can provide a direct or indirect measurement of yield 

stress, plastic viscosity, or some other property; whereas two-factor tests fall into Class III, 

which can typically measure yield stress and plastic viscosity, or closely related values. 
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Table 2-4 Single and multi-factor workability tests (after Ferraris, 19991) 

Test methods 

One- Slump, flow table test (DIN), penetrating rod (Kelly ball, Vicat, Wigmore test), K-

factor slump test, turning tube viscometer, Ve-Be time or remolding test, LCL apparatus; 

tests vibration testing apparatus; filling ability (flow cone, Orimet apparatus) 

Two- Two-point test, Bertta apparatus, BTRHEOM rheometer, modified slump cone 

factors test, IBB rheometer, vibration slope apparatus (VSA), BML viscometer, ICAR 

tests 

2.3.2 Category and Descriptions of Test Methods 

Workability test methods can also be classified in terms of the type of measurement principle 

during the test. The National Institute of Standards and Technology (NIST) divided existing 

rheology test methods into four broad categories (Hackley and Ferraris, 2001). The 

definitions of the four categories are listed in Table 2-5. 

Table 2-5 NIST categorization of concrete rheology test methods (adopted from Hackley and Ferraris, 
2001) 

Category Definition 

Confined Flow The material flows under its own weight or under an applied pressure 

Tests through a narrow orifice. 

Free Flow The material either flows under its own weight, without any confinement 

Tests or an object penetrates the material by gravitational settling. 

Vibration Tests The material flows under the influence of applied vibration. The vibration 

is applied by using a vibrating table, dropping the base supporting the 

material, an external vibrator, or an internal vibrator. 

Rotational The material is sheared between two parallel surfaces, one or both of which 

Rheometers are rotating. 

The NIST categorization method is most consistent with the current understanding of 

concrete rheology and workability. Confined flow, free flow, and vibration test methods 

1 Additional information were added based on latest development 
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generally attempt to simulate flow conditions of concrete in field placement, while rotational 

rheometers attempt to apply the general rheological concepts and directly earn rheological 

parameters of concrete. It should also be documented that some existing test methods, 

especially those tests for low slump concrete, do not directly measure the flow properties of 

concrete and, therefore, do not fit into any of the above four categories. The results of these 

tests can still give meaningful information on concrete workability. In this section, each 

category of test methods is described in general terms. The rotational rheometers are then 

described. 

(J) .  Conf ined f low tes ts  

Most of the confined flow test methods are only appropriate for SCC, and are not suitable for 

low-to-moderate slump concretes, because their flowability is insufficient to allow materials 

to readily flow under confined conditions and produce meaningful results. Some tests that 

incorporate vibration (which imparts energy into the concrete and produces flow in low 

flowability concrete) are classified as vibration tests, such as Vibra-John test (Wang and Hu, 

2005). 

The compaction factor test measures the degree of compaction resulting from the application 

of standard amount of work (Bartos, 1992). The K-slump test measures the amount of 

concrete that can be flow into the probe with a hollow center when it was inserted into 

concrete; this test was found to be directly related to the slump test (Ferraris, 1999). The 

filling ability test measures the capability of concrete to flow into a form, while the L-Box 

test estimates the time required for a concrete to flow within a certain range inside an L-

shape tube (Bui et al., 2002a). 

(2). Free flow tests 

Free flow test methods are usually simple to perform and provide a clear and direct result 

which generally relates to yield stress. The slump cone test is the most widely used 

workability test method in the lab and field for its repeatability and simplicity. A slump test 

(ASTM CI 43) is performed based on the deformation of concrete under self weight, which is 
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decided by the stress from gravity of concrete, and it was found to be related to yield stress. 

Schowalter and Christensen (1998) confirmed that a simple analysis based upon the Bingham 

model correlates slump data for a wide variety of materials, including concrete. Saak et al. 

(2004) state that a fundamental relationship exists between yield stress and slump, which is 

independent of the material under study and largely independent of cone geometry. As shown 

in Figure 2-4, Murata and Kikukawa (1992) developed equations to quantify related slump 

values with the yield stress of concrete (Equation 2-3). 
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Figure 2-4 Slump value and yield stress (adopted from Murata and Kikukawa, 1992) 

-4.83 log SL + 7.29 Equation 2-3 

Where tf is the yield stress (Pa) and Si is the slump (cm). 

Some models were also developed to simulate the shape of the concrete cone after the slump 

test according to the yield stress from the conical slump test by tools such as finite element 

analysis (Pashias et al., 1996; Schowalter and Christensen, 1998; Tanigawa et al., 1986). 

However, it was found that the slump test is only suitable for certain ranges—it is not 

appropriate for measuring concrete with too low or too high slump (Zain et al., 1999). Other 

research claimed that slump test is not sufficient to reflect the rheology of concrete. An 

example was shown by Tattersall (1991) in Figure 2-5. Two concretes had the same slump, 

but one was suitable for piping and the other was not because it had a much higher viscosity 

value caused by the angularity of the aggregate. Since slump is largely unaffected by 

viscosity, the slump test cannot pick up the difference between these two concretes. 
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Torque (Nm) 

Figure 2-5 Different concretes with same slump (adopted from Tattersall, 1991) 

Penetrating rod tests, such as Kelly ball, Vic at and Wigmore, measure the depth of 

penetration of object (Powers, 1968; Bartos, 1992; Wong et al., 2001). Some researchers 

claimed that these tests only compare the applied stress with the yield stress of concrete and 

sometimes can not give a direct result. Furthermore, the time required to perform these tests 

is substantially longer than other tests because the settling distance can not be recorded until 

the concrete harden (Bui et al., 2002a). 

The flow table test measures the spread of concrete when it is dropped a predetermined 

number of times on a metal sheet. The result is considered to be related to viscosity because 

dropping on the metal sheet subjects the concrete to a stress larger than the yield stress 

(Tattersall, 1991). Ferraris and de Larrard (1998) developed a modified slump test, which 

measures the time for a plate to slide down to certain distance in addition to slump value. It 

was intended for use as a field test to measure both yield stress and viscosity; however, it was 

found that this test is only suitable for concrete of a limited range of workability. 
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(3). Vibration tests 

The Vebe (Ve-Be) eonsistometer measures the capability of concrete to change shape under 

vibration. Bartos (1992) reported that the Vebe eonsistometer is a suitable test for 

determining differences in consistency of very dry mixes, but it may be difficult to determine 

the end point of the test. The remolding test (Powers, 1968) is similar to the Vebe test, which 

measures the remolding effort use the number of drops required to remold the concrete to the 

shape of the outer cylinder. The LCL apparatus determines the time it takes for concrete to 

flow into a new form. This test was found to be suitable only for concretes with low and 

moderate workability. The Vibra-John test (Wang and Hu, 2005) is similar to the L-box test; 

which measures the ability of concrete to flow through an opening under vibration. The 

vibration slope apparatus (VSA) was designed for estimating both yield stress and viscosity 

of low slump concrete, which measures concrete flow from chute in certain angle under 

vibration; however, the equipment itself and data analysis method is still being verified 

(Koehler et al., 2004; Wang et al., 2005). 

(4). Rotational rheometers 

Many attempts have been made to adapt traditional rotational rheometers to measure the 

workability of concrete. Rotational rheometers apply shear stress to concrete under different 

shear rates in order to discover the flow curve and measure the fundamental rheological 

parameters including yield stress and viscosity. Various equipment have been developed 

based on different principles, including the coaxial rheometer, vane rheometer and parallel 

plate rheometer. The size of this equipment varies from a mixing truck to a portable device. 

Details regarding these rheometers will be discussed in next section. 

(5). Other methods 

As discussed, some measurement methods was developed to estimate the workability of dry 

concrete, which is not directly related to concrete flow. Ritchie (1962) used a triaxial test 

method to study the properties of fresh concrete and found that the angle of internal friction 

and the apparent cohesion can be discovered through the test. He also stated that the viscosity 
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of the mix may be recorded in terms of the initial yield and the plastic viscosity 

characteristics of matrix; however, the cohesion is possibly best measured by direct tension. 

Li et al. (2004a) developed a shear box test to determine the fluidity of concrete using direct 

shear test method. Results shows the test results of the yield stress for three types of highly 

fluid cementitious materials under different mean normal stresses. It was found that the yield 

stress of high fluidity concrete in the fresh state, which results from its interfriction, increases 

linearly with the normal stress applied on the shear plane. 

Amer et al. (2004) used gyratory compaction to study the density and mechanical properties 

of roller-compacted concrete (RCC). The gyratory compactor produced specimens with 

mechanical properties consistent with those achieved in the field, and the gyratory compactor 

may be used to substitute other methods presently used for preparing RCC specimens such as 

the modified Vebe apparatus, the vibrating table, and the vibrating hammer. 

2.3.3 Rotational Concrete Rheometers 

Rheometer technology is based on theories from hydraulic science and stems from models. 

Limited understanding of concrete rheology and the relatively high cost restrict the 

development of this equipment. However, in the last couple of decades, several instruments 

have been developed for concrete use, which employ different rotational geometry, including 

rotating vanes, coaxial cylinders and parallel plates. 

(1) Vane rheometer 

Tattersall (1973) first developed the two-point rheometer based on the fact that fresh concrete 

behaves as a Bingham material and therefore measurements on at least two rates of shear are 

needed to characterize it. The two-point device developed by Tattersall is the origin of most 

of the other concrete rheometers. Some researchers improve the test by modifying the two 

point test (Wallevik and Gjorv, 1990; Domone et al., 1999). However, the device's size 

limits its use in the field. The ICAR rheometer was developed by Koehler and Fowler (2004), 

which is a portable rheometer with small size that is approximately the size of a drill and can 



www.manaraa.com

22 

be operated by hand or positioned above a standard container. Attempts had also been made 

to measure the workability of fresh concrete using a mixing truck (Amziane et al., 2005). 

Although the plastic viscosity determined by the truck measurement was found to not 

correlate with plastic viscosity measured by the ICAR rheometer well, the yield stress did 

correlate well with the measured slump and the ICAR rheometer results. The IBB rheometer 

is an instrument with an H-shaped impeller controlled by computer. Using a DC motor; the 

impeller is capable of rotating in planetary motion, which is more accurate compared to other 

impellers and keeps acting on materials in same shearing plane. The portable version of IBB 

rheometer was developed recently for site use (Ferraris and Brower, 2004). 
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(a) Two point test (Adopted from Tattersall, 1991 and Ferraris, 2004) 

i 
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(c) IBB rheometer (Adopted from Ferraris and (b) ICAR rheometer and vane (Adopted from 

Brower, 2004) Amziane et al., 2005) 

Figure 2-6 Vane concrete rheometers 
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The differences between the equipment and the impellers used in different rheometers are 

shown in Figure 2-6. The rotational concrete rheometer had been widely used to estimate 

workability of concrete of a wide range from 2 inch slump to SCC. Wallevik and Gjorv 

(1990) pointed out two main problems with the original two-point workability test apparatus, 

namely the segregation of the concrete during testing and the difficulties in operating the 

equipment. These problems also apply to other rotational vane rheometers. In addition to 

that, because of the complicated flow pattern, the device must be calibrated. 

(2). Coaxial rheometer 

The BML viscometer was developed in Norway in 1987 based on both the Power and Wiler 

plastometer and Tattersall two-point device (Gjorv, 1998; Geiker et al., 2002a). A large-scale 

field coaxial cylinder rheometer, CEMAGREF, which was originally developed to measure 

mud-flow rheology has also been applied in measuring concrete rheology (Coussot and Piau, 

1995). 

(a) CEMAGREF rheometer (Adopted from (b) BML rheometer (Adopted from Ferraris 

Coussot and Piau, 1995) and Brower, 2004) 

Figure 2-7 Coaxial concrete rheometers 

These two devices are shown in the following Figure 2-7. Compared to the rotational vane 

rheometer, the flow pattern of material while testing is simpler and it is relatively easy to 

interpret the results. However, the device requires huge dimensions for a desirable linear 

flow gradient between the shearing surfaces. For example, the CEMAGREF has a 1.2m 

diameter, 0.2m gap, and a sample volume of 0.5m3, which greatly limits their use. Besides, a 
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problem was found that the shearing zone between the inner and outer cylinders has a 

tendency to dilate, which results in artificially low measurements of torque. In addition, the 

device is too large to be used outside of a lab. 

(3). Parallel plate rheometer 

The BTRHEOM rheometer was developed in France (de Larrard et al., 1997; Hu and de 

Larrard, 1996), which is a parallel plate rheometer capable of measuring the yield stress and 

viscosity of moderate-to-highly fluid concrete mixtures. The device includes a vibrator to 

consolidate the concrete and is capable of measuring the effect of vibration on the rheological 

parameters (de Larrard et al., 1997). The UIUC rheometer was built in University of Illinois 

at Urbana-Champaign (UIUC) based on BTRHEOM. Figure 2-8 showed the difference of 

these two rheometers. The major changes of UIUC rheometers are to reduce the difficulties 

involved in the installation and cleaning of the apparatus during the experiments. 

The devices of the parallel-plate concrete rheometer are able to measure yield stress, plastic 

viscosity, and yield stress at rest or dilatanacy of concrete. A model has also been proposed 

for predicting the plastic viscosity of HPC from the mixture proportions using the data from 

BTRHEOM rheometer. It was reported that the comparison with the experimental results is 

satisfactory (Hu and de Larrard, 1996). However, the device is complex and expensive for 

(a) BTRHEOM rheometer(Adopted from de 

Larrard et al., 1997) 

(b) UIUC rheometer (Adopted from Ferraris 

and Brower, 2004) 

Figure 2-8 Parallel-plate concrete rheometers 
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everyday field use. In additional to that, the device is only suitable for concrete with slumps 

greater than 4 inches, the limitation of measuring range constrained the application of these 

rheometers. 

Papo (1988) reported that the results achieved from different researchers do not agree either 

qualitatively or quantitatively because of the different mix conditions as well as different 

experimental techniques, procedures and instruments employed. Two phases of international 

tests, phase I in LCPC (France) on 2000, phase II in MET (USA) in 2003, had been 

performed to compare the different concrete rheometers. Various rheometers including the 

BML, BTRHEOM, CEMAGREF, IBB and two-point were considered, while mixtures with a 

wide range of yield stress and viscosity were used. It was found that purpose to correlate 

pairs of rheometers can be established, specifically, the ranking is similar by all rheometers 

and there is a high degree of correlation exists between rheometers. However, the absolute 

values of rheological parameters are very different; therefore, it was recommend that relative 

viscosity be used as a practical method to compare different rheometers (Ferraris and 

Brower, 2004; 2001). Additionally, these two comparisons showed that it is necessary to 

develop reference materials in order to learn the absolute rheological value and improve the 

accuracy of concrete rheometers. The selection of reference materials are currently under 

discussion by ACI236A commettee. 

2.3.4 Typical Rheometer Test Results 

Initially, the most commonly used rheometers measured shear stress while the tested fluid is 

subjected to a controlled shear rate. The yield stress is determined by the maximum shear 

stress, which normally occurs at the early stage of testing. As shown in Figure 2-9 (a), the 

torque decreases with increasing velocity in a steady state (Coussot and Piau, 1995). 

Commercially available rheometers are designed for simpler, more homogenous liquids; they 

are not well suited for measuring fluid materials like fresh concrete that contains solid 

particles. Another kind of procedure is more oftenly used in concrete rheology measurement, 

which applies an increasing shear rate to the material, and records the shear stress at different 

shear rates. The flow curve as shown in Figure 2-9 (b) can be obtained through the test, and 
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the yield stress and viscosity can be calculated from the interception and slope of the curve 

respectively. 
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Figure 2-9 Typpical results from CEMAGREF rheometer (adopted from Coussot and Piau, 1995) 

However, due to the complication within the flow pattern while testing because of the 

applied different shape of impeller, the shear rate in a mixer varies significantly from point to 

point. It is difficult to calculate exact value of shear stress and shear rate. Instead of shear 

stress and shear rate curve, the torque verse speed relation as shown in Figure 2-10 is more 

often learned through the test (Tattersall, 1976; Tattersall and Banfill, 1983). The equation as 

shown in Equation 2-4 is normally used: 

T = G + HN Equation 2-4 

In this equation, T is the torque act on impeller (Nm), N is the rotation speed (r/s), G is torque 

resistance (Nm) and H is flow resistance (Nm-s). It is generally agreed that an effective 

average shear rate exists that is proportional to the impeller speed, that the flow of concrete 

in the container is laminar, and the torque resistance can be related to yield stress while flow 

resistance can be related to viscosity (Tattersall, 1991). The value of G and H can be obtained 

through linear regression of the flow curves. 
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Figure 2-10 Typical flow curves from concrete rheology test 

Through the whole test process, an increase of shear rate (up curve) followed by a decreasing 

shear rate (down curve) is regularly used. As shown in Figure 2-11, the ascending curve did 

not approximate the Bingham model well. It has been recognized by researchers that a 

certain amount of time is necessary for cementitious materials to reach equilibrium state. The 

downward flow curves generally follow the Bingham model well, which is because the time 

to attain equilibrium at a given shear rate is shorter when going from a higher to a lower 

shear rate (Nehdi and Mindess, 1996). Hence, the down part of flow curve is generally used 

to calculate the parameters of flow and torque resistance. 
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Figure 2-11 Down curves and up curves of a typical test result (adopted from Nehdi and Mindess, 1996) 
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2.4 Factors Affecting Concrete Rheology 

Rheology is affected by all of the components of concrete and essentially every condition 

under which concrete is made. Factors including the amount of water, the properties and the 

amount of the cement, properties and proportion of fine and coarse aggregates, type and 

amount of mineral and chemical admixture, temperature of the concrete, mixing time and 

method, and the time since the water and cement made contact will be discussed in this 

section. 

(1). Water content 

Water content is the most important factor governing the rheology of concrete. Increasing the 

water content while keeping the proportions of the other constituents constant will decrease 

yield stress and viscosity of the concrete. However, increased water may lead to segregation 

and to bleeding. Due to equipment limitation, most research focuses on the effect of water 

content on rheology of cement, rather than concrete (Rosquoet et al., 2003; Svermova et al., 

2003). Jones and Taylor (1977) showed an empirical equation that related the flow curves of 

a cement paste to its w/c. Banfill (1994) summarized previous results and showed that the 

increase of water content would result in higher slump and less Vebe time. 

(2). Cement characteristics and content 

The physical and chemical properties of cements are correlated to the rheological properties 

of cement pastes. Vom Berg (1979) studied the influence of specific surface area (SSA) and 

concentration of solids on the flow behavior of cement pastes. He found that the yield stress 

and plastic viscosity of cement paste increased as the cement fineness or the solids 

concentration increased, which reflects the dominance of the water cement interface in this 

system. The fineness of cement particles controls the balance of attractive and repulsive force 

between cement particles, which has a profound impact on the flow of concrete. At a given 

water content, low cement content tends to produce harsh mixtures with poor workability, 

while high cement content produces better cohesiveness. 
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(3/ viggregafe 

The particle size of aggregate influences the water requirement for a given slump of concrete. 

Very fine sands will require more water for a given consistency; on the other hand, they will 

produce harsh and unworkable concrete compared to coarser sands at same water content. 

The shape and texture of aggregate particles can also affect the rheology. Generally, the more 

nearly spherical the particles, the more workable the resulting concrete will be. The gradation 

and fine-to-coarse aggregate ratio will also provide concrete with different rheology. The 

effect of various properties of aggregate will be described in detail later. 

(4). Chemical admixtures 

Admixtures can change the yield stress and viscosity of concrete. The workability of concrete 

mixtures is commonly improved by air-entraining and water-reducing admixtures. An air 

entraining agent (AEA) typically increases paste volume and improves the consistency of the 

concrete while reducing bleeding and segregation. Chia and Zhang (2004) stated that adding 

AEA could reduce the plastic viscosity without changing yield stress, because they produced 

small bubbles of air which provided lubrication. Conversely, Struble and Jiang (2004) found 

that with increasing air content, the yield stress increased and the plastic viscosity decreased. 

In fresh concrete, charged cement particles cling together and form floes which trap water 

inside. After adding a water reducer (WR), the admixture molecules adsorbed solid surfaces, 

thus, dispersing floes into individual grains and releasing trapped water for improving 

concrete workability (Kantro, 1980; Mehta and Monteiro, 1993; Papo and Piani, 2004b). Cry 

et al. (2000) studied the effect of high range water reducer (HRWR), or superplasticizer, on 

the rheology of cement paste. Shear thickening was observed when suspensions had a high 

solid concentration and when repulsive interactions are predominant. Chia and Zhang (2004) 

found that WR or HRWR will decrease yield stress but did not have a significant effect on 

the plastic viscosity. While the results of Golaszewski and Szwabowski (2004) showed that 

HRWR could considerably reduce yield stress value, it might increase viscosity. Perret et al. 

(2000) studied the effect of different cement and HRWR, and he found that diverse 

combinations of cement and HRWR provided pastes with different rheological behaviour. 



www.manaraa.com

30 

Viscosity modifying admixtures (VMA) or viscosity enhancing admixtures (VEA) were 

commonly applied in SCC recently because they were found to be able to improve the 

stability of SCC (Lachemi et al., 2004a). A VMA is a water-soluble polymer that increases 

the viscosity and cohesion of cement-based materials. A VMA also increases the 

homogeneity of cement-based materials and leads to greater uniformity of hardened 

properties. In the case of flowable concrete with high slump (larger than 200mm), the 

addition of a VMA is shown to significantly increase the thixotrophy compared with similar 

concrete made without any VMA (Assaad et al., 2003). Khayat et al. (2002) found that these 

admixtures increase the yield value and viscosity rheological parameters. The yield value and 

plastic and apparent viscosities of cement grouts increased with increasing dosage of VMA 

while the apparent viscosity decreased more dramatically at low shear rates than that at high 

shear rates with increasing dosage of HRWR (Khayat and Yahia, 1997). The combined use 

of proper dosages of VMA and HRWR is shown to clearly contribute to creating high-

performance cement paste that is highly fluid yet cohesive enough to reduce water dilution 

and enhance water retention (Lachemi et al., 2004b; Kamal, 1998). 

Research had shown that the time of the addition of admixture also affects the properties of 

concrete. Ferraris et al. (2001) reported that the delayed addition of HRWR leads to a better 

dispersion of cement. Aiad (2003) and Aiad et al. (2002) claimed that the lower the amount 

of HRWR absorbed by cement paste, the lower amount of water needed for constant fluidity. 

Research had been performed to study the effects of different kinds of admixtures and of the 

timing of adding of different admixtures on fluidity and fluidity loss of fresh cement pastes. 

Results indicate that delaying the addition of naphthalene formaldehyde sulfonate (NFS) 

admixtures increases the cement paste workability when compared with adding them at the 

beginning of concrete mixing (Aiad et al., 2002). 

(5). Supplementary Cementitious Materials (SCMs) 

SCMs are widely used in order to improve strength, durability, and workability in concrete. 

Freshly mixed cementitious materials are generally more workable when fly ash is applied 

(Rudzinski, 1984). The major reason for this improving of workability is because of the 
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spherical particles and smooth surface texture which can act as small ball bearings to reduce 

interparticle friction. Experiment results also show that particle size distribution, density and 

particle morphologies of fly ash are the major factors affecting their fluidity (Li et al., 

2004b). 

Replacing some of the cement with fly ash will generally decrease yield stress, but may 

either increase or decrease the viscosity, depending on the properties of the mineral 

admixture and its interaction with the cement. For all cementitious mixtures, the SSA and 

particle size distribution (PSD) of the particles have the greatest influence on workability. 

Very finely divided mineral admixtures, such as silica fume, can have a very strong negative 

effect on water demand and hence workability, unless HRWR are used (Cry et al., 2000; 

Faroug et al., 1999; Park et al., 2005). However, the fact that silica fume increased the 

superplasticizer demand at a constant rheology while ground silica or limestone will not 

affect it significantly suggests that a high surface area is not the only parameter influencing 

the superplasticizer demand, and silica fume may have a strong affinity for multi-layer 

adsorption of superplasticizer molecules (Nehdi et al., 1998). 

(6). Mixing 

It was known that mixing conditions, especially mixing sequence and mixer type, also affect 

the rheological performance of cementitious materials. Results from Roy and Asaga (1979) 

showed that a change from the least severe to the most severe mixing procedure can cause 

both the yield stress and plastic viscosity to decrease by about 60%, while at the same time 

the width of the hysteresis loop decreased. 

Yang and Jennings (1995) found that the rheological behaviors of cement paste are strongly 

influenced by mixing methods during the first two hours. Poorly mixed cement paste (mixed 

by hand) has more rapidly-increasing peak shear stresses than well-mixed cement paste (high 

energy blender). The agglomeration initially occurs in cement powder and later may remain 

in the paste due to insufficient mixing was considered to be responsible for the higher value 

and faster increase in peak stress. 
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Williams et al. (1999) investigated the effects of mixing shear rate on the yield stress and 

viscosity of cement paste by using a rheometer with different pre-shear rates. The results 

show that well-mixed pastes exhibit a decreased propensity for further structural breakdown 

and a low plastic viscosity; thus, they exhibit improved flowability. Ferraris et al. (2001) 

found that the Hob art mixer or blender may have different influences on the rheological 

properties of cement paste when different kinds of mineral admixtures were applied. Banfill 

also confirmed that the yield stress and plastic viscosity decrease as the duration of stirring 

time increase using a simple mechanical stirrer (Tattersall and Banfill, 1983). 

(7). Time and environmental conditions 

It is a well known fact that freshly mixed concrete loses flowability with time due to the 

process of hydration. The reduction in flowability is generally attributed to loss of water by 

evaporation or absorbed into aggregate, and from chemical reaction with the cementitious 

materials in early hydration reactions. Elevated temperatures increase the rate of water loss 

for the similar reason as time elapse. 

Several researchers have studied the rheological performance through the hydration process. 

Petit et al. (2005) studied the influence of temperature and time on the evolution of the 

rheological properties. Lei (1997) studied the effects of hydration on both the micro structure 

and flow properties of fresh cement paste during the induction period. Different measurement 

methods were also applied; for example, Laboutet et al. (1998) used ultrasound methods for 

monitoring the rheology properties of cement, while Nachbaur et al. (2001) used a dynamic 

mode rheometer to study the evolution of the structure of cement and pure tricalcium silicate 

pastes from mixing up to setting and even after setting. Jiang and Roys (1993) studied the 

rheological properties of the paste as functions of hydration and setting. Struble and Lei 

(1995) use oscillatory rheology to study the change of yield stress through the setting process 

of cement paste, and it was found that yield stress increases slowly at first, then more rapidly. 

They stated that this rapid increase in yield stress occurs at the end of the induction period 

and corresponds to the initial setting. 
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(8). Vibration 

When the concrete experienced vibration, the segregation resistance decreased with a 

decrease in both the yield stress and viscosity. However, it was reported by Chia and Zhang 

(2004) that the effect was more pronounced with the decrease in yield stress. Hu and de 

Larrard (1996) found that the vibration reduced the yield stress of fresh concrete to about half 

of that without vibration, but had little influenced the plastic viscosity. 

De Larrard et al. (1997), Krstulovic and Juradin (1999) and Banfill et al. (1999) studied the 

effect of vibration on concrete rheology and fluidity using a BTRHEOM rheometer and 

vibration rheometer respectively and a vertical pipe apparatus . It was found that workability 

is proportional to the peak velocity of vibration up to a critical level, above which it does not 

further increase. The critical velocity is proportional to the yield value of the unvibrated 

concrete, and the peak workability was found to be inversely proportional to the plastic 

viscosity of the unvibrated concrete (Banfill et al., 1999). 

Rheological parameters determine the workability of fresh concrete. A lower yield stress and 

plastic viscosity normally indicate a more fluid mix, while reducing the yield stress will 

lower the resistance to flow, and reducing viscosity will result in less cohesion and increased 

response during compaction by vibration. As mentioned, the rheological performance of 

cementitious materials is determined by various factors. Figure 2-12 summarizes the general 

finding of varying the proportions of concrete constituents on the Bingham constants. 

Increasing the water content whilst keeping the proportions of the other components constata 

generally decreases yidld stress and viscosity in approximately similar proportions. Increase 

the paste content will nromally increase viscosity and decrease yield stress, which make the 

mix more easily start to flow but stickier. Adding a WR or HRWR decreases yield stress but 

leaves viscosity relatively constant. The small bubbles of air produced by AEA provide 

lubrication to reduce the plastic viscosity, but at relatively constant yield stress. Replacing 

some of the cement with SCMs will generally decrease yield stress, but may either increase 

or decrease viscosity, depending on the nature of them and the interaction with the cement. 
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Figure 2-12 Effect of varying the proportions of concrete constituents on Bingham constants 

(adopted from Illston and Domone, 2001) 

It is necessary to point out that these factors generally interact with each other so that 

changing the proportion of one component to produce a specific characteristic requires that 

other factors be adjusted to maintain workability. Limited research has been done on the 

effects from the combination of different components; for example, Xie et al. (2002) 

investigated utilizing both ultrapulverized fly ash (UPFA) and HRWR in order to develop 

high-strength SCC. Svermova et al. (2003) studied the combination effect of w/c, HRWR 

dosage, VMA dosage and the proportion of limestone powder as replacement of cement. Due 

to the limitation of space, these were not specifically discussed here. 

2.5 Effects of Aggregate on Concrete Rheology 

The flowability of concrete can be significantly changed by using different kinds of 

aggregate (Mehta and Monteiro, 1993). Most of the current research focused on paste and 

mortar rheology due to the complexity of concrete and the limitation of equipment. Research 

regarding the effects from the aggregate are still relative limited. 
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(1). Aggregate volume fraction 

The amount of aggregate and the relative proportions of fine and coarse aggregate are two 

factors that significantly affect the concrete rheology. The increase in the fine 

aggregate/coarse aggregate ratio generally increases the water content required for a given 

workability. For a given w/c, increasing the aggregate/cement ratio generally results in 

decrease of workability; furthermore, more cement is needed when finer aggregate grading is 

used. The greater portion of fine aggregates in concrete provides larger surface area and 

requires a higher quantity of cement paste to coat all of the particles and to fill the interstitial 

spaces between particles. An excess of fine aggregate will result in a somewhat more 

permeable and less economical concrete, and the potential of drying shrinkage of hardened 

concrete will also increase although the mix is more workable. Alternatively, an increase in 

the relative coarse aggregate proportion will initially lead to a more workable, stronger, and 

cheaper concrete. However, there is an optimum coarse aggregate amount in considering 

workability. An excessively high amount of coarse aggregate results in a mix that is harsh, 

which means it is prone to segregation and difficult to finish. This will eventually lead to a 

weaker and less durable hardened concrete (Mindess et al., 2003). 

Denis et al. (2002) studied the effect of coarse aggregate on the workability of sandcrete with 

two different mortar matrixes. The results confirmed the significant effect of coarse 

aggregate concentration on workability. Results from Geiker et al. (2002b) showed that the 

relative yield stress and relative viscosity, which were defined as the rheological parameters 

of concrete divided by the parameters of mortar, both significantly increased with the 

increase of coarse aggregate volume fraction, no matter what type of aggregate was used 

(Figure 2-13). 



www.manaraa.com

36 

ISO 

O Spheres 
# Sea dredged 
à Mixed 
â Crushed 

A. 50 
A. 30 

» - A « 130 
—A = 150 

e 100 • 

0.9 0.8 0.7 0.5 0,4 0.2 0.3 0,1 0 
Normalized coarse aggregate volume traction 

(a) Relative yield stress 

O Spheres 
• Sea dredged 
A Mixed 
A Crushed g 10-

Q. 

0.4 0 0.2 0.6 0.8 1 

Normalized coarse aggregate volume fraction 

(b) Relative viscosity 

Figure 2-13 Relative rheological parameters of concretes varying in amount and type of coarse 

aggregates (adopted from Geiker et al., 2002b) 

(2). Particle size distribution 

The particle size distribution, or gradation, of an aggregate is one of the most influential 

aggregate characteristics in determining how the concrete will perform as a pavement 

material. Gradation and the maximum size of aggregate in PCC affects the mix design as 

well as durability, porosity, workability, cement and water requirements, strength and 

shrinkage and durability of PCC. In order to obtain the proper workability of concrete, a 
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certain amount of cement paste will be required to fill up the space between aggregate, hence 

the gradation and size of aggregate will significantly affect the workability of concrete. Very 

fine sand or very coarse aggregate cannot produce the most satisfactory result. Aggregate that 

does not have a large deficiency or excess of any size and has a smooth grading curve is 

required to produce satisfactory and economical concrete (Mindess et al., 2003). 

Aggregates by themselves can display different levels of "compactability", depending on the 

grading and the method of compaction used. A term of "coarse aggregate factor" is used to 

describe the compaction degree of coarse aggregate gradation, which is defined as the ratio 

of the amount of coarse aggregate in a unit volume of concrete to the amount of the same 

coarse aggregate compacted by the standard dry-rodding procedure into a mold of the same 

unit volume. This factor might be considered as the percent of maximum compacted density 

of the coarse aggregate in the concrete. Nichols (1982) found that the coarse aggregate 

factors are lower when the coarse aggregates size becomes smaller. As a result, decreasing 

maximum particle size normally requires an increase in the total fine aggregate content and a 

corresponding increase in water demand. 
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Figure 2-14 Effect of aggregate size on water requirement 

(replot of data adopted from Mehta and Monteiro, 1993) 

If a finer aggregate is substituted in a mixture, the water content typically must be increased 

to maintain the same workability because finer aggregate grading requires more cement to 

coat the particles. Mehta and Monteiro (1993) reported the approximate mixing water and air 
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content requirements for different slumps and nominal maximum sizes of aggregates. As 

shown in Figure 2-14, with the increase of aggregate size, the water demand for same slump 

decreases. However, note that increasing the maximum aggregate size (from 3/4" to 1.5") 

reduces the mixing water requirement but has an offsetting negative effect on concrete 

strength (Bloem and Gaynor, 1963). Larger size coarse aggregates are suffer greater effects 

during the vibration process than the smaller size aggregate (Safawi et al., 2004). Figure 2-14 

also confirmed that the addition of AEA can improve concrete workability, which is 

consistant with the statement from section 2.4. 

Graded aggregate offers a noticeable improvement in ability to fill the space between 

particles, so that an optimized aggregate blend results in a higher degree of packing and 

therefore requires lower amounts of paste. Research indicated that there is an optimum 

aggregate gradation that can produce the most effective w/c and highest strength. The 

optimum gradation should have the lowest possible surface area and void content per unit 

weight (Smith and Collis, 2001). The grading of fine and coarse aggregate that is suitable for 

manufacture of ordinary concrete is specified by a national standard (ASTM C33). The 

purpose of setting up these limits on grading is to get close to the optimum grading for 

economical concrete mixes in general construction practice. 

Jamkar and Rao (2004) reported that for a given material, there exists a unique combination 

of coarse and fine aggregates that yield maximum workability, which implies that the volume 

of fine aggregate of a particular type and grading depends on the grading, shape and surface 

texture of coarse aggregate. Struble et al. (1998) found that both the yield stress and viscosity 

depends upon the amount and grading of the aggregate and properties of cement paste, which 

can both reach minimum values at an intermediate sand content. This behavior can be 

expected based on considerations of particle packing. 
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Figure 2-15 Influence of gradation of artificial sands on the flow of mortars 

(adopted from Eager et al., 2004) 

Eager et al. (2004) investigated the influence of artificial sands with different grading (ART1 

through ARTS as shown in Figure 2-15) on the rheological parameters of self-compacting 

mortars in two different concrete mix design (Mix C and Mix D). The results shown in 

Figure 2-15 indicate that the gradation of aggregate influences the yield stress and the 

viscosity. The effect is different in various mix design; however, increased fineness generally 

leads to increases in both yield stress and viscosity. 

(3) Particle shape and surface texture 

Aggregate composed of spherical shapes with smooth surface textures is generally 

considered to be good for the workability of concrete. Rounded particles create lower degrees 

of particle-to-particle interlock than angular particles and thus provide better workability. 

Particles with smoother surfaces have a lower surface-to-volume ratio than rough surfaced 

particles and thus may be easier to coat with binder. Particles with rougher surfaces provide 

more area to which the cement paste can bond, which requires more sand, cement and water 

to provide adequate workability. However, the requirement for workability does not match 

the requirement of concrete strength. Angular, irregular shapes with rough surface texture 

aggregate have greater surface area for bonding with cement paste and have better interlock 

between aggregate particles which creates stronger concrete. 
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Malhotra (1964) studied the correlation between the particle shape and surface texture of fine 

aggregates and their water requirement. Research showed that crushed sands tend to have a 

higher water requirement than natural sands because of the higher angularity and differences 

in surface texture. Angular fine aggregate particles interlock and reduce the freedom of 

movement of particles in the fresh concrete. As a result, using angular fine aggregate (e.g., 

manufactured sand) increases the amount of fine aggregate that must be used for a given 

amount of coarse aggregate and generally requires that more water be added to achieve the 

workability obtained with rounded sand. Kosmatka et al. (2002) confirmed that the 

workability of fresh concrete and the bond between cement paste and a given aggregate is 

affected by particle shape and surface texture. It was found that water content must be 

increased to maintain workability if angular aggregate is substituted for rounded aggregate. 

Crushed aggregates having numerous flat or elongated particles will produce less workable 

concrete that requires higher mortar content and possibly higher paste content. Quiroga and 

Fowler (2004) systematically studied the effect of aggregates characteristics on the 

performance of PCC. Their research confirmed that aggregates blended with well-shaped, 

rounded, and smooth particles require less paste for a given slump than those blended with 

flat, elongated, angular, and rough particles. 

As shown previously in Figure 2-13, Geiker et al. (2002b) used aggregates with different 

aspect ratios (A) to study the effect of fraction and shape of coarse aggregate on the rheology 

of concrete. The investigation indicated that the aspect ratio, angularity, and surface texture 

of aggregates affect the viscosity and yield stress differently, round and smaller aggregates 

results in lower rheological parameters. Particle shape is the shape of individual aggregate 

particle and surface texture is degree of roughness or irregularity of surface of an aggregate 

particle. There is no direct ASTM and AASHTO standard test or detailed definition for fine 

aggregate particle shape and surface texture. However, tests for the void content of bulk 

aggregate and the rate of flow through an orifice provide excellent empirical measurements 

indirectly related to particle shape characteristics (Wills, 1967). A fine aggregate angularity 

test (ASTM CI252) and void content of coarse aggregate test (ASTM C29) were generally 

used to estimate the surface and shape of aggregate particles, arising from the idea of 

"comparability" of aggregate. 
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Some researchers have developed different methods and parameters in order to estimate the 

shape and texture of aggregate. For example, the image analysis was developed by Persson 

(1998) and Dilek and Leming (2004), while Mora et al. (1998) and Kwan et al. (1999) used 

digital image processing (DIP) techniques. Garboczi et al. (2001) used x-ray computed 

tomography to acquire three-dimensional aggregate shape information. However, there is still 

a big gap until these methods are widely utilized, mainly because these methods require 

expensive equipment, large data bases, and complicated analysis method. 

(4). Others 

The porosity of aggregates can also affect workability. Normally less water will be available 

to provide workability if the aggregate can absorb a great deal of water. Absorption of 

mixing water causes a change in workability of fresh concrete, which usually happens within 

the first 5 to 10 minutes after mixing. This effect can reduce the medium slump to zero or a 

very low value, while the compactability of the concrete may be too low to permit full 

compaction and achieve the potentially high strength caused by the reduced free w/c of the 

mix. Low density aggregate tends to float in the fresh mix and rise to the surface. As a result, 

high workability mixes with light weight aggregate will segregate more easily than normal 

mixes of the same workability. On the other hand, the use of high density aggregate also 

increases the potential of segregation. The amount of limestone dust or quarry dust in an 

aggregate was also found to have significant effects on concrete workability. Celik and Marar 

(1996) reported that the slump and air content of fresh concrete decreased as the percentage 

of dust content increased. Ho et al. (2002) stated that mixes with quarry dust required a 

higher dosage of superplasticizer to achieve similar flow properties due to its shape and 

particle size distribution. Research also indicated that finer and better graded limestone dust 

significantly increases the deformability of the paste (Bosiljkov, 2003). 

2.6 Modeling of Concrete Rheology 

A successful model that can predict the rheological parameters of concrete from composition 

would be valuable because engineers may be able to predict fresh concrete properties with 
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this model. Using the model, engineers can also optimize mixture proportions at the mixture 

design stage. A great deal of work has been done relating concrete rheology parameters to its 

composition. The existing rheological models are summarized in the following categroies: 

(1). Empirical model 

Due to the limitation of test equipment, the rheological parameters can not always be learned. 

Some researchers try to correlate the particle concentration with the parameters from 

empirical tests, which are considered to be related to concrete rheology. Ouchi et al. (1999) 

adopted a simple evaluation method for the interaction using the mortar funnel test, in which 

funnel speeds (speed of materials passing through the funnel) of mortar with and without 

coarse aggregate (glass beads were used as model coarse aggregate in this research) are 

compared. It was claimed that the index for the interaction, which can be defined by the ratio 

of funnel speed of mortar with aggregate and without aggregate (Rmb/Rm), is similar to the 

idea of relative viscosity and yield stress. As shown in Figure 2-16, the volume content of 

coarse aggregate was found to be able to relate to Rmt/Rm- However, the application of this 

empirical model is very limited, not only because it is only suitable for specific equipment, 

but the applicable range of material is limited. As it was shown in Figure 2-16, the Rm\JRm for 

high coarse aggregate content (for example, 30%) is not available, because the glass beads 

block the opening of the funnel. 
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Figure 2-16 Relationship between RmifRm and coarse aggregate content 

(adopted from Ouchi et al., 1999) 
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(2). Volume fraction model 

Volume fraction models were used to predict the rheology of cementitious materials by 

relating aggregate volume percentage (volume fraction) to concrete rheology. The basic idea 

of this kind of model is that the viscosity of a composite increases with increasing volume of 

solids. 

Einstein first deduced a model for the viscosity of a Newtonian fluid containing a low 

concentration of small rigid inclusions (Powers, 1968). He assumed that the disturbance 

propagated by the particle could spread without reflection and without interference from 

other disturbances (Equation 2-5). 

T] = T}0 (1 + \rj\j)) Equation 2-5 

In this equation 77 and rjo are the viscosities (Pa s) of the composite and suspending fluid 

respectively, [rj] is the intrinsic viscosity parameter (equals to 2.5 for spheres particles) and (f> 

is the particle volume concentration. Practically, the effects of interferences that were not 

considered in the derivation are proven to be negligible for particle concentrations up to 

about 3% by volume (Powers, 1968). However, this model is valid for dilute suspension 

(<f><0.05) only because the particle interaction can not be neglected after this limit (Hobbs, 

1976). 

Figure 2-17 illustrates the volume fraction of solids versus relative viscosity (viscosity of the 

composite divided by viscosity of the matrix) of the composite according to some 

experimental results reported in previous literature (Hu et al., 1995). It clearly shows that the 

viscosity of the composite will increase with the increasing of solid proportion. 

A lot of models based on the idea of volume fraction have been developed to describe the 

rheological parameters of composites including cementitious materials, most of which 

analyzed fresh concrete as a paste/aggregate composite. These models generally attempt to 

infer the viscosity of the concrete from the paste viscosity by multiplying it by a function 

which takes the volume of granular phase into consideration. In order to calculate the 
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viscosity of multi-modal suspensions, the interactive calculation was performed in a 

consideration of the suspending fluid and particles. However, these models generally did not 

consider the inter-particle interactions, and simplified the particles into single size or a 

number of discrete classes. 
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Figure 2-17 Solid concentration and relative viscosity (adopted from Hu et al., 1995) 

(3). Maximum packing density model 

With the development of concrete study, it was found that the rheology of concrete is not 

only determined by the volume fraction of aggregate, but is also related to the type of 

aggregate. By introducing a new parameter of maximum packing density of aggregate, 

Hobbs (1976) derived an equation to predict the viscosity of concrete based on the volume 

concentration of aggregate: 

Vc =7f 
\-<j) + 2.5^max^/(^max -<j>) 

1 + ^ 
Equation 2-6 

In this equation, 7)c and ijp are the viscosities (Pa s) of concrete and paste respectively and 

(j)milx is the maximum packing factor of particles. It was found that the equation can be used to 

describe the effect of both type and volume concentration of aggregate from previous data. 

The effect of aggregate volume concentration on concrete viscosity using aggregates with 
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different maximum packing density is shown in Figure 2-18. Roshavelov's research (2005) 

further confirmed the effect of maximum packing density by successfully calculating the 

viscosity of fresh mixes as a function of volume fraction of solids, normalized with respect to 

their maximum packing values. 

# 

;,C,klCATE VOLUME CONCENTRATION. V 

Figure 2-18 Relation between relative viscosity and aggregate volume concentration 

(adopted from Hobbs, 1976)1 

According to Hobbs (1976), the rheological equation for a concrete mixture containing rigid 

aggregate particles in a Bingham paste was further derived and given by: 

• O p  
1 + + n 1 + -

2-5(4. 

(WXfLx -f)) 
rc  Equation 2-7 

In this equation zc is the shear stress of concrete(Pa), T0p is the yield stress of concrete (Pa), 

and fc is the shear rate inside concrete (s-1). According to the theory, increasing the volume 

fraction of aggregate can therefore increase the yield stress and plastic viscosity of concrete. 

The equation can be reduced to Einstein's equation when there is no yields stress (TOp=0) and 

the concentration is extreme low ((j)^0). 

' Here VUi max represents (j)max in Equation 2-7 
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The Krieger-Dougherty (K-D) equation is one of the most well known equations for fitting 

relative viscosity data based on effective medium theory arguments (Struble and Sun, 1995). 

The K-D equation (Equation 2-8) is valid for a broad range of solid volume fractions of a 

suspension (<j))\ the increase of (f> increases the viscosity as if small particles were being added 

to the suspension, which is treated as a homogeneous viscous medium. 

—  =  ( 1  É _ E q u a t i o n  2 - 8  

%o fL* 

In this equation, ?; and tjq are the viscosities (Pa s) of the composite and suspending fluid 

respectively, [rj] is the intrinsic viscosity parameter, <j) is the particle volume concentration, 

and <j)max is the maximum packing factor of particles. Barrioulet and Legrand (1991) also 

conducted a study on the semi-empirical modeling for rheology behavior of vibrated fresh 

concrete, in which it was found that the rheological parameters of concrete depend on all of 

the parameters including the aggregate concentration, as well as the shape and density of its 

grains. 

Another important model to predict concrete rheological properties from their composition is 

the compressible packing model (CPM) developed by de Larrard (1999), which was derived 

from the packing concept. The CPM model uses packing density to characterize the granular 

skeleton, which takes the packing process, the distribution and the shape of grains and the 

degree of agglomeration of powders into consideration. According to the CPM model, the 

rheological properties of composites not only relate to volume fraction of aggregate, but also 

relate to particle properties including amount, shape, aspect ratio, angularity, and surface 

texture, which can be reflected by maximum packing density (Chang and Powell, 1994; 

Geiker et al., 2002b). 

Based on the CPM model, Ferraris and de Larrard (1998) found that the relative 

concentration of solids has a significant effect on the viscosity. As shown in Figure 2-19, the 

points fall on a single curve, regardless the difference of mixture. An empirical equation for 

the best fitting curve is: 
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rjlr]Q = exp 26.75 — 0.7448 
{</> max y 

Equation 2-9 

Where 7 and % are the viscosities (Pa s) of the composite and suspending fluid respectively, 

<j) is the particle volume concentration, and (j)max is the maximum packing factor of particles. 

However, it was found that the wide range of error exists, which might be caused by the 

uncertainty of the maximum packing density <f>max. The error may also be contributed to the 

fact that tested mixtures under shear are less compacted than the consolidated mixture. 

Figure 2-19 Relative viscosity as a function of relative concentration of solids 

(adopted from Ferraris and de Larrard, 1998)' 

The same trend as observed from the plastic viscosity can not be obtained when the yield 

stress is plotted as a function of relative concentration of solids (Figure 2-20). The 

contributions of the various granular fractions must therefore be considered according to the 

nature of the materials. 
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1 In this figure, //' referring to relative viscosity, (j)/(j>* referring to (j)/<j)max as in Equation 2-9 
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Figure 2-20 Yield stress as a function of relative concentration of solids 

(adopted from Ferraris and de Larrard, 1998) 

According to Ferraris and de Larrard (1998), the yield stress can be calculated by a linear 

combination of all the components' volume fraction verse close-packing ratios. It appears that 

different semi-empirical equations can be learned for concrete with and without HRWR as 

the following equation 2-10 and 2-11 show respectively: 

For mixtures without HRWR, 

Tg = exp(2.537 +0.540%,, +0.854%, + 1.134% J 

For mixtures with 1% HRWR, 

= exp(2.537 + 0.5404: + 0.854%, + 0.224%, ) 

Equation 2-10 

Equation 2-11 

In this equation t0 is the yield stress (Pa) of concrete, and the indices g, s and c refer to 

gravel, sand and cement, respectively. The compaction indices Kx can be calculated by (1-

$x)/$x-max-

Various applications had been successfully applied according to CPM or models derived 

from it. Grunewald (2004) used the CPM approach to study the effect of steel fiber in the 

rheology of concrete according to the volume fraction and close-packing ratios. However the 
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maximum packing factor, which is not a parameter that can be simply measured. A lot of 

researchers calculated the (j)max value by fitting the equation provided all the other parameters 

can be calculated or measured, which actually turns the equation into a semi-empirical 

equation. Some researchers calculated the <j)max value by putting individual particles in one by 

one using computer simulation, which involves a tremendous amount of work. In addition to 

that, the calculation algorithm and results are still being debated. Different parameters were 

used in deriving the equations for the rheology model for bimodal suspensions; for example, 

Mammoli (2002) used the value of <j>max=0.68 and [ij]</>max=1.8, while Shikata (2001) used the 

value of </>max=0.63 and [?// <t>max=2. 

(4). Two-phase theory 

The previously mentioned Krieger-Dougherty modified model and the CPM treat fresh 

concrete as solid phase and liquid phase, i.e., aggregate and paste are considered as two 

phases. However, the range of aggregate size in concrete is so wide, from less than 200pm to 

up to several inches; it is questionable whether coarse aggregate and fine aggregate can be 

handled in the same way. Also, there is an advantage to considering coarse aggregate and 

fine aggregate separately, because practically, fine and coarse aggregate are usually from 

different sources and proportional independently. Several researchers have attempted to 

study the workability of concrete by considering it as two-phase composite of coarse 

aggregate and mortar. 

Topcu and Kocataskin (1995) proposed a model to establish basic composition-property 

relations for fresh concrete, using the two-phase composite materials approach and the law of 

plastic viscosity. Topcu and Kocataskin found that results from the two most practical tests 

(slump test and Vebe test) of fresh concrete can be well related to the composition as: 

Sc = Sm - ;—— 77777" Equation 2-12 
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C rn 1 11 s TT 
Equation 2-13 

In this equation S and T are the slump (cm) and Vebe time (s) of concrete, respectively, the 

indices of m, a and c refer to mortar, coarse aggregate and concrete, Va is the volume fraction 

of coarse aggregate, and the material constants M, k, and k' depend upon the characteristics of 

the mortar and the coarse aggregate phases. Equations 2-13 and 2-14 show that parameters 

like slump of concrete are functions of the mortar (one phase) slump, Sm, and volume fraction 

of coarse aggregate (the other phase), Va. 

Kurokawa et al. (1996) developed a model of concrete rheology based on the two-phase 

theory approach. They stated that the yield stress of fresh concrete (which was calculated 

from the slump test) could be expressed by the sum of the yield values of matrix mortar zom , 

and the contribution from the friction of coarse aggregate To(fric) (Equation 2-14). The 

viscosity (which was calculated from flow time in L-box test) can be expressed by the sum of 

viscosity of matrix mortar and the contribution from volume fraction and friction of coarse 

aggregate (Equation 2-15). 

In these equations To and r] are the yield stress (Pa) and viscosity (Pa s) of concrete 

respectively, the indices of m, c refer to mortar and concrete, and the indices of (V:i) and (fric) 

refer to the contribution from volume fraction and by friction of coarse aggregate. The 

influence of the rheological parameters from the coarse aggregate were also calculated as 

shown in Figure 2-21. Results demonstrated that with the increase of volume fraction of 

coarse aggregate, both yield stress and viscosity of concrete increase. Additionally, the yield 

stress and viscosity of the concrete composite increase with the yield stress and the viscosity 

of the mortar phase. Nevertheless, the research did not provide specific methods to 

theoretically calculate the term by friction; on the contrary, % r/nC) and rj(fric) are the value 

7 0  c  T 0  m  +  ( f r i c )  Equation 2-14 

Equation 2-15 
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subtracted by the input r0m and ?/,„ from the test result. Further research is still necessary to 

develop theoretical methods to calculate the contribution of coarse aggregate friction directly. 

(5) Gap and aggregate spacing theory 

Research shows that by using the concept that a layer of paste surrounds all sand and gravel 

particles with varying thickness, the influence of aggregate content on workability can be 

explained (Denis et al., 2002). The gap existing between the aggregate was used to attempt 

to link the rheology of the cement paste with that of concrete. Ferraris and Gaidis (1992) 

used a parallel plate paste rheometer to study the effect of gap distance on the torque acting 

on the rheometer. Figure 2-22 shows that the torque significantly decreases when the gap 

increases over the range from a minimum of around 0.05mm up to 0.6mm at a maximum rate 

of 39s"1. It is clear that the gap thickness does have significant effect on the applied torque, 

especially in the range of less than 0.2mm. Based on this fact, they proposed the concept of 

relating the rheology of cement paste and the gap sbetween particle to the rheology of 

concrete. 

0.1 0-2 0-3 0.4 0.5 

Volume fraction ofgmvd. Vg 

(a) Yield stress 

0.1 0.2 M M OS 

(b) Viscosity 

Figure 2-21 Increase of rheological parameters by friction of coarse aggregate 

(adopted from Kurokawa et al., 1996)1 

1 Ty referring to r0 in Equation 2-14 in this figure 
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Figure 2-22 Effect of gap (adopted from Ferraris and Gaidis, 1992) 

Bui et al. (2002b) presented the idea of a rheological model according to aggregate spacing 

and average diameter of aggregate. A specific method to calculate aggregate spacing was 

also proposed based on void-surface area theories. 

= D 

S 
V -V 

l + _£ 
r - r .  

Equation 2-16 

y 

In this equation Dss is the average spacing between aggregate particle surfaces (mm), Vp is 

paste volume (liter), V0id is the volume of voids between aggregate (liter), Vc is total concrete 

volume (liter) and Dav is the average aggregate diameter (mm). 

The gap and spacing approach requires measuring the rheological behavior of paste through 

independent means, which was not yet done in their study. The rheological models using this 

approach therefore remain in the qualitative study stage. 

(6) Excess paste theory 

Kennedy (1940) stated that the rheology of concrete depends on not only the rheology of 

cement paste, but also the amount of excess paste to fill the voids in between the aggregate. 

As shown in Figure 2-23, the theory declared that in addition to the paste that fills up the 

space between aggregate (compacted paste); an excess paste will be require to maintain the 
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flow. Su et al. (2001) developed a design method for SCC according to this theory. The 

amount of required aggregates is determined, and then the paste of binders is filled into the 

voids of aggregates to ensure that the concrete thus obtained its flowability, self-compacting 

ability and other desired SCC properties. 

Thickness of excess paste Void 

Figure 2-23 Excess paste theory (adopted from Oh et al., 1999) 

Oh et al. (1999) found that when the thickness of excess paste increased, both the yield stress 

and viscosity of concrete decreased. Base on this phenomenon, an excess paste theory was 

developed by using model concrete with polymer as paste and artificial plastic beads as fine 

and coarse aggregate. The related excess paste thickness (/), which can be defined by the 

excess paste thickness divided by the average diameter of aggregate, was found to be directly 

related to the relative viscosity and yield stress of concrete, and the relationship was shown to 

be independent to the mix proportion of concrete (Figure 2-24). The regression equations are: 

T0r = 0.0525F"222 + 1 Equation 2-17 

T j r  = 0.0705F-1'69 +1 Equation 2-18 

In these equations Tor and rj, are the relative yield stress and relative viscosity of model 

concrete respectively, and /"is the calculated relative thickness paste thickness. 
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Figure 2-24 Relative thickness of excess paste and rheological parameters of concrete 

(adopted from Oh et al., 1999) 

The excess paste thickness theory can be used to explain the benefit of graded aggregate, 

which can provide larger amounts of excess paste because of the smaller void volume 

between aggregate particles. Research indicates that there is an optimum aggregate gradation 

which can produce the most effective w/c and highest strength. The optimum gradation 

should have the lowest possible surface area and void content per unit weight (Smith and 

Collis, 2001). Both yield stress and viscosity depend on the amount and grading of the 

aggregate and the properties of cement paste, which can both reach minimum values at 

intermediate sand content. This behavior can be expected based on considerations of particle 

packing (Struble et al., 1998). The relative paste thickness is considered in the modeling 

within this study, and will be detailed described in Chapter 8. 

Finite element methods were adopted as tools to analyze the workability of concrete, 

especially to simulate the deformation of fresh concrete. Mori and Tanigawa (1992) and 

Tanigawa and Mori (1989) had successfully used the viscoplastic finite element method 

(VFEM), viscoplastic suspension element method (VSEM) and viscoplastic divided space 

element method (VDEM) to simulation the deformation in slump cone test. 

(7). Others 
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The NIST used a computer simulation of the dissipative particle dynamics (DPD) method to 

simulate the concrete flow between rebars and inside coaxial rheometer (Martys and Ferraris, 

2003; Martys, 2005). Flatt et al.'s research (2004) showed very promising results in terms of 

handling aggregates with a wide distribution of particle sizes and shapes for modeling of 

concrete rheology. However, he also pointed out that accurate modeling requires reliable 

input on the interaction of the dispersant with the hydrating cement at the molecular level. 

2.7 Summary 

Concrete workability is one of the most important properties of concrete because it can not 

only decide the pumping, spreading, molding and compaction of fresh concrete, but also 

potentially affects the hardened concrete properties. Concrete rheology, a part of concrete 

workability, which is the science of deformation and flow of matter, can be used as a tool to 

quantitatively study the workability of concrete. However, due to the complications of 

concrete composition and the limitation of measuring equipment, the study of concrete 

rheology is still very limit. 

A variety of test methods can be used to estimate concrete workability. Among all the tests, 

the slump cone test is the most widely used method; however, it can only be related to yield 

stress, which is insufficient to fully reflect the rheology of concrete. With the progress of 

modern techniques, more equipment has been developed for measuring concrete workability. 

Rotational rheometers are found to be a promising tool to study concrete rheology, which can 

be used to learn both rheological parameters directly by analyzing the shear stress versus 

shear rate relation in concrete flow curve. 

The Bingham model, with the parameters of yield stress and viscosity, is normally used to 

describe concrete rheology. These rheological parameters of concrete are decided by 

different factors, such as mixture components including water, cement, chemical and mineral 

admixtures, and the mixing and environmental conditions. Among all of these factors, the 

effects of aggregate are one of the most important, because size, gradation and type of 

aggregate all have significant effect on concrete workability. However, studying this factor is 

restricted by the measurement and characterization of aggregate. 
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A successful rheology model can predict fresh concrete performance from concrete 

components, and more importantly, can be used to improve concrete mix design. Different 

models were proposed to study the concrete rheology, from the very simple empirical model 

considering only aggregate volume fraction to the model considering the gaps between 

aggregate and excess paste thickness. More systematic and comprehensive models are 

developed because different factors such as particle properties including amount, shape, 

aspect ratio, angularity, surface texture and maximum packing density are considered. 

However, further work is still necessary to develop more practical and widely-used models 

with more theoretical analysis. 

According to the review from previous research, the gap/distance between aggregate 

particles, void contents and particle friction between aggregate are all important factors that 

should be considered in the concrete rheology model. A new model using excess mortar 

thickness will be developed in the present study, which will be based on the excess paste 

theory and modified by considering concrete as two-phase of mortar and coarse aggregate. 



www.manaraa.com

57 

CHAPTER 3. EXPERIMENTAL DESCRIPTION 

3.1 Materials Characterization 

Type I Portland cement which meets the requirements of ASTM CI 50 was used throughout 

the experiment. The chemical composition and physical properties of the cement are listed in 

Table 3-1. In order to obtain consistent results, only the cement that passed through #200 

(0.075mm) sieves was used in paste tests. 

Table 3-1 Chemical and physical properties of cement 

CaO SiOz AI2O3 FezO; MgO K2O Na20 (Na20) eq." S03 LOI** 

(%) 64.2 20.8 5.55 2.25 1.91 0.50 0.19 0.52 2.96 0.82 

Mean size = 23.7pm Fineness = 399 m2/Kg Specific gravity = 3.15 

*(Na20) eq. = (Na20) + 0.658 (K20) 

"LOI = loss of ignition 

Two different types of fine aggregates-riversand and limestone-were used in mortar tests. 

The sands were oven dried (OD) and sieved. Five single-sized1 aggregates retained on sieves 

of #100, #50, #30, #16 and #8 were used. In order to study the effect of aggregate gradation, 

some riversand was recombined into three different gradations (Gl, G2, and G3) according 

to the top and low limit specified in ASTM C33 and another middle-point gradation between 

the limits. Together with one natural graded riversand (G4) and a standard graded sand 

(ASTM C778); five different sand gradations were studied. The gradation curves of Gl 

through G4 sands were presented in Figure 3-1. The specific gravity, absorption, 

uncompacted void content and friction angle of these sands were all measured. 

1 In this dissertation, single-sized aggregate used in the study still have particles size distribution with range 
from the maximum sieve size aggregate particles retained on to the minimum sieve size aggregate particles 
passed through. For example, single-sized aggregate of #30 have particles with maximum size of #16 (1.18mm) 
and minimum size of #30 (0.6mm). 
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Figure 3-1 Fine aggregate gradation1,2 

The natural graded riversand used in the concrete study was the same as used in the mortar 

and has a fineness modulus of 2.92. Four single-sized coarse limestone aggregate (#4, 3/8", 

1/2", 3/4") and three designed gradations (Gl, G2, and G3) of coarse aggregate were studied 

in concrete. Graded coarse aggregate were recombined from single-sized aggregate 

according to the top and low limit specified in ASTM C33 (Gl and G3 respectively) and 

another middle-point gradation between the limits (G2). The gradation curves of Gl through 

G3 coarse aggregates are presented in Figure 3-2. Specific gravity, absorption, uncompacted 

void content and friction angle of different aggregates were measured. In concrete mixing, all 

coarse aggregates were prepared in saturated surface-dried (SSD) conditions. The aggregates 

were immersed in water for 24+4 hours, then the surface water was removed according to 

ASTM CI27. 

1 In Figure 3-1, the shaded area indicates grading limits for fine aggregate specified in ASTM C33. 
2 F.M. = Fineness modulus, it is the index of the fineness of an aggregate - the higher the F. M., the coarse the 
aggregate. According to ASTM C125, the F. M. of either fine or coarse aggregate is calculated by adding the 
cumulative percentages by mass retained on each of a specified series and dividing the sum by 100. 
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Figure 3-2 Coarse aggregate gradation1 

Tap water ( 73 ± 3° F ) was used for the mixing of the cement paste, mortar and concrete. The 

water used for the aggregate specific gravity and absorption measurements meets the 

requirement of specification ASTM C127. An air-entraining agent (AEA), Daravair 1000, 

was employed based on cement content in the mix to gain an approximately 6% air content in 

concrete. 

3.2 Mix Proportions 

3.2.1 Pastes 

The effect of w/c and mixing conditions for cement paste were studied, w/c of 0.30, 0.35, 

0.40, 0.50, and 0.60 were selected for the paste tests. The pastes were mixed by either a 

Hobart mixer or a highshear mixer according to the procedure as described in Section 3.3. 

Flowability of the cement pastes, with different w/c and different mixing methods, was 

evaluated by the Brookfield rheometer and the mini-slump cone tests. 

1 In Figure 3-2, the shaded area indicates grading limits for coarse aggregate specified in ASTM C33. 



www.manaraa.com

60 

3.2.2 Mortars 

In order to study the factors that may affect flow behavior of mortar, a factorial mix design, 

as shown in Table 3-2, was used. The factors studied include sand-to-cement ratio (s/c), 

water-to-cement ratio (w/c), fine aggregate size, gradation and type. The s/c in mortars were 

1, 2 and 3 by weight. Different w/c were used to ensure the mortars had suitable workability 

(flowability of mortar can not be measured if the mix is too dry, while too much wetness in 

the mix will result in segregation). All batches of mortar were mixed according to the 

specification as described in ASTM C305. oven-dried (OD) sand was used in mortar mixing 

and the w/c of mortars were calculated saturated surface condition. A total of 136 mixes were 

studied. 

Table 3-2 Mortar mix proportions 

Sand w/c (s/c = 1) w/c (s/c = 2) w/c (s/c = 3) 

#8 0.30, 0.35, 0.40 0.36, 0.41,0.46, 0.51 0.41, 0.46, 0.51 

#16 0.35, 0.40, 0.45 0.36, 0.41,0.46, 0.51 0.46, 0.51,0.56 

Riversand #30 0.35, 0.40, 0.45 0.40, 0.45, 0.50, 0.55 0.46, 0.51,0.56, 0.61 

#50 0.36, 0.41,0.46, 0.51 0.41,0.46, 0.51,0.56 0.56, 0.61, 0.66 

#100 0.40, 0.45, 0.50 0.46, 0.51, 0.56, 0.61 0.61, 0.66, 0.71 

#8 0.35,0.40,, 0.45 0.41, 0.56, 0.51 0.46, 0.51,0.56 

#16 0.35, 0.40, 0.45 0.46, 0.51,0.56 0.46, 0.51,0.56 

Riversand #30 0.35, 0.40, 0.45 0.45, 0.50, 0.55 0.56, 0.61, 0.66 

#50 0.36, 0.41,0.46 0.51, 0.56, 0.61 0.56, 0.61, 0.66 

#100 0.40, 0.45, 0.50 0.50, 0.55, 0.60 0.66, 0.71, 0.78 

Gl 0.35, 0.40, 0.45 0.40, 0.45, 0.50 0.45, 0.50, 0.55 

G2 0.35, 0.40, 0.45 0.40, 0.45, 0.50 0.45, 0.50, 0.55 

Graded Sand G3 0.35, 0.40, 0.45 0.40, 0.45, 0.50 0.50, 0.55, 0.60 

G4 0.35, 0.40, 0.45 0.40, 0.45, 0.50 0.45, 0.50, 0.55 

Std — 0.45, 0.50, 0.55 — 
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3.2.3 Concretes 

The factorial mix design as shown in Table 3-3 was used for the concrete study. The factors 

include mortar mix design, coarse aggregate content, coarse aggregate size, and gradation. 

Since concrete is considered as a two-phase material consisting of a mortar phase and a 

coarse aggregate phase, concrete with three different mortar mix proportions marked as Ml, 

M2 and M3 with different s/c and w/c were used (Ml: s/c=1.75, w/c=0.45; M2: s/c=2.21, 

w/c=0.45; M3: s/c=2.60, w/c=0.50). In mixes Mix7, Mix8, and Mix9, a higher w/c was 

chosen to provide concrete with acceptable flowability (concrete slump higher than one inch). 

Limestone, with different sizes and gradations, was used as the coarse aggregate in the 

concrete. 

Table 3-3 Concrete experimental design 

Concrete Mix Mortar CA Content (%) CA Size/Gradation 

Mixl 37.8 19.0mm, 4.75mm, Gl, G2, G3 

Mix2 Ml 40.8 G2 

Mix3 44.0 19.0mm, 4.75mm, Gl, G2, G3 

Mix4 37.8 G2 

Mix5 M2 40.8 G2 

Mix6 44.0 19.0mm, 12.5mm, 9.5mm, 4.75mm, Gl, G2, G3 

Mix7 37.8 G2 

Mix 8 M3 40.8 G2 

Mix9 44.0 G2 

Concrete mix design is shown in Table 3-4 (fine aggregate and coarse aggregate were 

riversand and limestone respectively). A total of 23 concrete mixes, with three different sand 

contents, three different coarse aggregate contents and seven different coarse aggregate 

gradations/sizes were prepared. All of the concrete was mixed using the standard "3-3-2" mix 

procedure as described in Section 3.3. 
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Table 3-4 Concrete mix proportions 

Cement (pcy) Water (pcy) FA (pcy) CA (pcy) w/c 

Mixl 752 340 1317 1463 0.45 

Mix2 716 322 1254 1580 0.45 

Mix3 677 306 1185 1705 0.45 

Mix4 658 298 1452 1461 0.45 

Mix5 627 285 1384 1581 0.45 

Mix6 594 266 1310 1707 0.45 

Mix? 592 293 1538 1472 0.50 

Mix8 562 278 1460 1585 0.50 

Mix9 530 263 1380 1707 0.50 

3.3 Mixing Procedures 

3.3.1 Paste 

Two different sets of equipment and procedures were used to study the effect of mixing 

method on cement paste rheology. The Hobart model N50 mixer as shown in Figure 3-3 was 

used for standard mixing based on ASTM C305. 

The mixing method is described below: 

1. Put the water into the mixing bowl on the mixer, 

2. Add the cement to the mixing bowl, 

3. Wait 30 seconds for the absorption of the water, 

4. Mix at a slow mixing speed (140+5r/min) for 30 seconds, 

5. Stop the mixer for 15 seconds. During this time scrape down any paste or cement that 

may have collected on the size of the bowl into the batch, and 

6. Mix again at medium speed (285+1 Or/min) for 60 seconds. 
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m 

Figure 3-3 Hobart mixer 

A high shear mixer was also used for paste mixing in order to compare the pastes from the 

two different methods. The highshear mixing process was adapted from slurry mixing 

procedures for oil well cement slurries specified by the American Petroleum Institute (API) 

Specification 10A (API, 2002). A Chandler Engineering Waring Blender, model 3070, high 

shear mixer (Figure 3-4) was used. 

The mixing method is described below: 

1. Put water into the mixing bowl, 

2. Add cement into the mixing bowl and allow 30 seconds for the absorption of the 

water. For low w/c (0.3 and 0.35), cement was added while mixer was running, 

within 15 seconds, 

3. Mix the paste at a mixing speed of 6000r/min for 30 seconds, 

4. Stop the mixer for 30 seconds, during this time scrape down any paste or cement that 

may have collected on the size of the bowl into the batch. For dry mixes, paste inside 

bowl was also stirred, and 

5. Mix again at speed of 6000r/min and mix for 30 seconds. 
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Figure 3-4 Highshear mixer 

3.3.2 Mortar 

The Hobart mixer was also used in mortar mixing. The mixing procedures as specified in 

ASTM C305 are described below: 

1. Put water into the mixing bowl, 

2. Add the cement to the mixing bowl, then start the mixer and mix at slow speed 

(140+5r/min) for 30 seconds, 

3. Add the entire quantity of fine aggregate slowly over a 30 seconds period, while 

mixing at slow speed, 

4. Stop the mixer, change to medium speed (285+10r/min) and mix for 30 seconds, 

5. Stop the mixer for 1.5 minute, during first 15 seconds, scrape down into the batch any 

mortar that may have collected on sides of the bowl, 

6. Mix again at medium speed (285+1 Or/min) for one minute. 

3.3.3 Concrete 

The Lancaster 30-DH pan concrete mixer (Figure 3-5) was used for concrete mixing. The 

pan mixers employ a flat cylindrical pan to hold the concrete constituents; the pan is rotating, 

while the mixing blades (separate from the pan) are also rotating inside of the pan but in the 

opposite direction as the pan. A separate blade is fixed against the inside edge of the pan and 
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scrapes the material off the side, moving it towards the center where the mixing blades are 

rotating. 

The concrete mixing procedure was based on ASTM CI92 lab mixing procedure (multiple-

step mixing procedure), and it is described below: 

1. Coarse aggregate was mixed with approximate a half of the amount of water, together 

with air entraining agent (AEA), for about 30 seconds, 

2. Sand, cement and the remainder of the water were then added, after which the mixer 

runs for three minutes, 

3. The mixer was in rest for three minutes, 

4. The mixer started again for another two minutes. 

3.4 Test Methods 

Aggregate properties, such as specific gravity, absorption, uncompacted void content, and 

friction angle, were measured in this research. Paste flowability was measured by the 

Brookfield rheometer and mini-slump cone. Mortar flowability was measured by the 

Brookfield rheometer and flow table. Concrete flowability was measured by the portable IBB 

1 _ • V-

Figure 3-5 Rotating concrete pan mixer 
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rheometer and the slump test. The Unit weight of fresh concrete and the seven day 

compression strength of concrete were also measured in the experimental study. 

3.4.1 Fine Aggregate Property Measurements 

The specific gravity and absorption of fine aggregate were measured according to the ASTM 

C128 specification (See Appendix I for details). 

Since no standard test method is available for direct characterization of aggregate particle 

shape and surface texture, a fine aggregate angularity test was developed based on ASTM 

C1252. In the test, a given amount of fine aggregate was allowed to fall through a funnel 

from specified height and fill a nominal 100ml measure. Uncompacted void content is 

calculated based on three factors: the volume of the cylindrical measure, the dry bulk specific 

gravity, and the weight of the fine aggregate collected in the measure (Figure 3-6). This 

method defined fine aggregate angularity as the percentage of air voids present in loosely 

compacted fine aggregates. Higher void contents generally indicated more fractured faces 

and more irregular shape, resulting in a more difficult packing of particles. 

Figure 3-6 Fine aggregate void content test 

In addition to the uncompacted void content of fine aggregate from ASTM CI252, another 

simple method was developed to estimate the friction angle of the different fine aggregates 

based on a basic soil mechanics concept. As shown in Figure 3-7, a sample of 1500 to 2000 
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grams of sand was allowed to flow through a funnel from a height as close to the top of the 

pile as possible. According to the mechanism of slopes stability, the maximum angle formed 

by the sand pile (angle of repose) was considered as a constant and correlated to the friction 

angle of the particles (Lambe, 1969). Three measurements were taken for given sand, and the 

average value was used as the fine aggregate friction angle. 

3.4.2 Coarse Aggregate Properties Measurement 

The Specific gravity and absorption of coarse aggregate were measured according to the 

specification of ASTM CI27. The void content of coarse aggregate was measured according 

to ASTM C29. 

In a similar manner to measuring the friction angle of the fine aggregate, the coarse aggregate 

friction angle was measured as shown in Figure 3-8 by forming a pile with the maximum 

possible angle. A sample of 40 to 80 pounds of aggregate was used to form the pile and a 

scoop was used to pour aggregate from a height as close to the top of the pile as possible. The 

maximum angle formed by the limestone pile was considered as a constant and correlated to 

the friction angle of the particles. Three measurements were taken for a given coarse 

aggregate, and the average value was used as the coarse aggregate friction angle. 

#30 Riversand 

Figure 3-7 Fine aggregate friction angle test 
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Figure 3-8 Coarse aggregate friction angle test 

3.4.3 Paste and Mortar Rheology Measurement 

A Brookfield R/S SST2000 rheometer (Figure 3-9) was used to measure the rheology 

parameters of cement paste and mortar. It is a stress control rheometer controlled by 

computer program. Shear stress and rate are calculated according to the reading in the load 

cell and the size of the rotating vane. 

Mortar/Paâte 

Vane 
Mortar/Paste 

Vane 

(a) Overview (b) Side view of vane and (c) Top view of vane and 

container container 

Figure 3-9 Brookfield rheometer 

Two different sizes of vanes were used according to the rheology parameters of different 

materials under test. The physical parameters of the vanes are listed in Table 3-5: 
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Table 3-5 Vane physical parameters for Brookfield rheometer 

Diameter (m) Height (m) Torque range (Pa) Container 

V30-15 0.015 0.030 121-4040 2"x4" Cylinder 

V40-20 0.020 0.040 51-1700 3"x6" Cylinder 

A rheology measuring procedure as shown in Figure 3-10 was used for paste and mortar 

rheology measurement. After placing the paste/mortar into the rheometer, the specimens 

were sheared at a constant rate at relative low level of 15s"1 (for paste) or 30s"1 (for mortar) 

for 60 seconds (referred to as "pre-shear"). In the rheology testing procedure, a pre-shear step 

is necessary because results showed that if sedimentation occurs in mortar/pastes during 

viscometric experiments, large errors in the results are possible (Bhatty et al., 1982). 

Following the pre-shear, the vane will be stopped 60 seconds, within which time the mixing 

vane was lifted and the sample was gently stirred to mitigate the formation of preferential 

shear planes due to particle orientation. This stirring was to prevent anomalous low shear 

stress results during subsequent testing. The sample was then subjected to a controlled rate 

hysteresis loop where the shear rate was increased from 0 to 50s"1 (for paste) or 100s"1 (for 

mortar) over a 60 seconds period and then immediately decelerated back to 0s"1 over an 

additional 60 seconds. For the cement paste measurement, a lower maximum shear rate at 

50s"1 was used determine the linear shear stress - shear rate behavior through the whole 

measurement process (this will be explained in Appendix II). In order to get an accurate 

measurement, a zero-calibration was performance for the Brookfield rheometer every day 

before any tests. The zero-calibration was generally performed by rotating the impeller/vane 

at several different speeds without applying any torque (without testing materials). The 

purpose of the operation was to recalibrate the torque sensor to eliminate the friction in the 

rheometer in the readings. 
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Figure 3-10 Paste and mortar rheology testing procedure 

A typical test result of mortar rheology measurement is shown in Figure 3-11. The down 

curve of the rheology measurement, which has the full structure broken down is generally 

agreed to confirm to the Bingham model and was able to be used to obtain yield stress and 

viscosity (Banfill, 1994). The yield stress was determined by extending the linear portion of 

the down curve (shear rate from 100 to 5s"1) to the y-axis. The yield stress can be defined as 

the minimum stress required for a material to start flowing/deforming (Schramm, 1994). 

The plastic viscosity is defined as the ability of a material to resist flow, which can be 

obtained from the slope of the linear portion of the down curve for Bingham material. High 
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plastic viscosity is normally characteristic of a less flowable suspension than low plastic 

viscosity suspension. 

The hysteresis loop is the area between the up and down curves of the shear stress- shear rate 

diagram. The loop is created from a phenomenon called thixotropy, where there is a shear 

thinning or shear thickening behavior of the material. This is caused by a decreasing or 

increasing in the viscosity as a stress is applied followed by recovery as the stress is removed 

(Mindess et al., 2003). The area of the hysteresis loop has units of energy and is related to the 

energy required to break down interparticle attractions and weak bonds in the material. 

300 y = 1,67x + 72.64 
R2 = 0.98 

Up Curve 
t 200 

Viscosity 
r| = 1.67 

66/ 

2 100 

Yield Stress 
T0= 7:2.6 

0 20 40 60 80 100 
Shear Rate (1/s) 

Figure 3-11 Typical flow curve of mortar (#30 riversand, s/c=2, w/c=0.50) 

In addition to the rheometer tests, two other methods were also used to estimate the 

flowability in order to compare the rheology test with standard test results: (1) a mini-slump 

cone was used to estimate the flow of cement paste (Appendix III), (2) a flow table (ASTM 

C230) was used to estimate the flowability of mortar. The flow table test estimates the 

flowability of mortar based on the spread of a mortar cone using fewer than 25 drops of the 

flow table (Figure 3-12). Generally the higher flow percentage represents higher flowability 

of mortar. A flow table test for mortar was performed according to the procedure described in 
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ASTM C1437. For mortar with higher flowability, the flow percentage will be very high, 

which will result in a flow larger than the measurable range at 25 drops. In those cases, a 

modified flow table test considering the drop times was applied. It was found that the drop 

times have good correlation with spread diameter in logarithm scale, which is described in 

Appendix IV. A transfer equation of the calculated flow percentage from different number of 

drops to the standard 25 drops was also derived from experiment data. 

Figure 3-12 Flow table for mortar 

3.4.4 Concrete Rheology Measurement 

A portable IBB rheometer as shown in Figure 3-13 was used for concrete flowability 

measurements. The rheometer is a modification of the Tattersall two-point device (Tattersall, 

1991) which has been successfully used on a wide range of concretes, from concrete with a 

slump of 1 inch to self-compacting concretes (Ferraris and Brower, 2004; 2001). The IBB 

rheometer has a rotating impeller inserted into fresh concrete placed in a cylindrical container. 

A computer controlled DC motor turns an H-shape impeller capable of rotating in a planetary 

motion. For low-workability concretes it should be necessary to introduce planetary motion 

of the impeller because a relative loose portion may be formed if the impeller keeps passing 

through original orbit (Tattersall, 1991). The sample size of concrete is around 0.8ft3, while 

the cross sectional area of the impeller is 6.20 in2. 



www.manaraa.com

73 

A load cell in the IBB rheometer measures the reaction torque from the impeller while a 

tachometer measures the impeller's rotation speed. Similar to the Tattersall's two-point 

device for material following the Bingham model, the linear relationship between torque and 

speed is defined by the slope H and the zero speed intercept G, which can be related to 

plastic viscosity and yield stress, respectively (Tattersall and Banfill, 1983; Tattersall, 1976). 

The portable IBB, as shown in Figure 3-13 is constructed on an aluminum frame and 

includes wheels for easy transport. It is designed to be portable or transportable and can be 

used at a construction site. 

H-shape 
impeller 

Concrete 

(a) Overview (b) Side view of impeller and container 

Figure 3-13 IBB portable concrete rheometer 

A computer program was used to control the rotation speed of the impeller during the test. 

Figure 3-14 shows the test sequences used in the present research. Similar to the paste/mortar 

rheology test, the specimen was pre-sheared after placing the concrete into the container at a 

low constant rate, approximate 0.2 (rev/s), for 30 seconds. Following the pre-shear, the 

impeller stopped for 30 seconds, and a mallet was used to gently strike around the side of the 

container for 10 times, thus preventing the formation of preferential shear planes due to 

particle orientation. The sample was then subjected to a controlled rate hysteresis loop where 

the shear rate was increased from 0 to 1 (rev/s) over a 100 seconds period and then 
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immediately decelerated back to 0 (rev/s) over an additional 100 seconds. In order to get an 

accurate measurement, a zero-calibration was performed for the portable IBB rheometer 

every day before any tests. 
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Figure 3-14 Concrete rheology testing procedure 

When the impeller is rotating at different speed according to the testing procedure as shown 

in Figure 3-14, the resistance acted on the impeller was measured by the load cell. A typical 

result from IBB concrete rheology measure is shown in Figure 3-15, in which the measured 

data of the impeller speed and the measured torque are used to calculated G and H. Similar to 

the paste/mortar rheology measurement, the down curve of the rheology measurement, which 

confirmed to the Bingham model was used to obtain the term related to yield stress and 

viscosity. The yield term G (Nm) is determined by extending the linear portion of the down 

curve (1 to 0.04s"1) to the y-axis, which can represent the minimum stress required for a 

material to start flowing/deforming; hence, it can be related to concrete yield stress. The 

viscosity term H (Nm-s) is found from the slope of the linear portion of the down curve, 

which can represent the plastic viscosity as defined as the ability of a material to resist flow. 

Results showed that hysteresis loops were also observed for most of the concrete rheology 

measurements, which indicated that certain degree of structural breakdown still existed in the 

concrete rheology measurement. It was also observed that the rheological curve looks rough 
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compared to the curves observed in mortar or paste as shown in Figure 3-11. The contact of 

individual piece of aggregate with rheometer paddle significantly affected the reading of the 

force applied on the paddle. 
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Figure 3-15 Typical flow curve of concrete (Mixl-G2) 

In addition to the rheology measurement, concrete slump and unit weight were measured 

right after a batch mixing according to ASTM C143 and ASTM C138 respectively. 

Three 4 inch by 8 inch cylinders were cast for each mix, and the cylinders samples were 

prepared and stored in a curing room according to ASTM CI92. The Seven day compressive 

strength of the cylinders was measured according to ASTM C39. Three cylinders were 

measured for each batch of concrete, and the average value was used as the compression 

strength. 

Up Curve 

H = 5.37NmS 

Down Curve 

G = 2;l8Nm 
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CHAPTER 4. AGGREGATE TEST RESULTS 

In order to quantitatively study the effect of aggregates on the rheology performance of 

mortar and concrete, it is important to characterize the differences between the aggregates. 

The properties of fine and coarse aggregates, such as absorption, specific gravity, bulk 

density, uncompacted void content, and friction angle are presented in this chapter. 

4.1 Fine Aggregate Properties 

4.1.1 Specific Gravity and Absorption 

The specific gravity and absorption of the fine aggregates are presented in Table 4-1. 

Table 4-1 Specific gravity of riversand and limestone 

Riversand Limestone Standard Sand 

OD 2.59 2.42 2.66 

SSD 2.63 2.53 2.66 

As mentioned in the previous chapter, all of the fine aggregates used in this study were in an 

OD condition because it is practically very difficult to have all fine aggregates prepared in 

the SSD condition. Since dry aggregate absorbs water right after contact with water, the w/c 

of the mortar will change from the original mix design based on the OD condition fine 

aggregate. Two kinds of absorption from different fine aggregates were measured according 

to the modified testing method for fine aggregate specific gravity and absorption (Appendix 

I). The actual absorption within the test period, AbsACt% (first ten minutes after aggregate 

contacted with water) and the total absorption, AbsTot% (absorption capacity) of different fine 

aggregates were shown in Figure 4-1. The results indicated that riversand absorbs less water 

than limestone. The absorption of riversand increased with the size of aggregate, which 

might be caused by the larger amount of porosity contained inside larger aggregate particles, 

but this tendency was not clearly observed in limestone. The absorption of graded riversand 

used in the present research lay between the absorption of #30 and #16 riversand (which is 

the range of average size of these graded aggregate). The standard sand was found to have a 
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very low absorption capacity. This is likely due to the natural properties of silica sand, which 

has a very dense structure and is composed almost entirely of naturally-rounded grains of 

nearly pure quartz. 

• AbsAct % 
• AbsTot % 

#100 #50 #30 #16 #8 
(F.M.=1.00) (F.M.=2.00) (F.M.=3.00) (F.M.=4.00) (F.M.=5.00) 

(a) Single-sized riversand 

• AbsAct % 
AbsTot % 

#100 #50 #30 #16 #8 
(F.M.=1.00) (F.M.=2.00) (F.M.=3.00) (F.M.=4.00) (F.M.=5.00) 

(b) Single-sized limestone 

o 
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H AbsAct % 
• AbsTot % 
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1 i ? 1 

G3 G4 STD 
(F.M.=3.40) (F.M.=2.81) (F.M.=2.25) (F.M.=2.87) (F.M.=1.69) 

(c) Graded riversand and standard sand 

Figure 4-1 Absorption of fine aggregate 
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4.1.2 Void Content 

In order to estimate the void content of fine aggregate, a fine aggregate angularity test was 

employed. Based on procedure from ASTM CI252, the fine aggregate angularity was 

defined as the air voids present in loosely compacted fine aggregates. Higher void contents 

generally indicate more fractured faces and more irregular shapes, which result in a more 

difficult packing of particles. 

In the fine aggregate angularity test, a sample of fine aggregate was poured into a cylinder 

with known volume by flowing through a standard funnel. The uncompacted voids percent 

can then be calculated based on the difference between the cylinder volume and fine 

aggregate volume collected in the cylinder. The calculation of this uncompacted void content 

of fine aggregate can be shown as the following equation: 

V - W I v 
K-FA = — X100% Equation 4 - 1 

VFA 

In this equation, Vn.FA is the uncompacted voids (%), Vfa is the volume of cylinder (mm3), 

WFA is the weight of aggregate in cylinder (g), and yFA is the density of fine aggregate (g/mm3), 

which can be calculated according to the specific gravity of sand at OD condition from section 4.1.1 

(yFA = G$6„FAxlO"3g/mm3). 
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Figure 4-2 Void content of sand 

Figure 4-2 (a) indicated that limestone had higher uncompacted void percentages than 

riversand, which is because of the irregular shape of the particle. The smaller aggregate 

showed higher uncompacted void content. This phenomenon may caused by the fact that the 

effect of self weight in bigger size of aggregate is not negligible on particle compaction 

which might result in a denser packing comparing to smaller size of aggregate. Results as 

shown in Figure 4-2 (b) indicate that graded aggregate has lower void content than aggregate 

with just one single size, because smaller particles can fill up the space between bigger 

particles, in which case the space between aggregate particles significantly decreases. 
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4.1.3 Friction Angle 

In order to study the effect of aggregate friction on the flow performance of mortar and 

concrete, another test was used to estimate the aggregate friction angle based on the 

maximum angle formed by the sand pile (slope repose). The friction angles of different sands 

are presented in Figure 4-3. 
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Figure 4-3 Friction angle of sand 

Results showed that the measured friction angle of fine aggregate used in present research lay 

between 32° to 39°, which is consistent with previous research which stated that the angle of 

friction for sands usually ranges from 26° to 45° (Das, 1995). The friction angle test showed 
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that larger aggregate had higher friction because of the higher degree of internal friction and 

interlock from the higher percentage of rough and irregular shape particles. The #100 

limestone was found to have a much higher friction than #50 sand, this phenomena was 

caused by the relatively large amount of fines on aggregate particles which result in cohesion 

between aggregates. This result indicated that the test method may not be able to reflect the 

actual fraction angle of very fine sand. 

It is expected that angular particles will have a higher degree of interlocking than rounded 

particles, and hence that sands composed of higher percentage of angular particles would 

have the larger friction angle. The data of friction angles of riversand and limestone 

presented in Figure 4-3 (a) confirm this prediction. Riversand has lower friction angles when 

compared to limestone because of the relative round shape and smooth surface. No obvious 

difference of the friction angle between single-sized and graded sand was found in the test. 

The friction angles of the graded riversand used in present study lay between friction angle of 

#30 and #16 riversand, and the standard sand has a comparable friction angle with #100 

riversand because of the similar size and nature of its particles. 

4.2 Coarse Aggregate Properties 

The properties of the coarse aggregate used in the concrete study are presented in this 

section. The limestone aggregates studied had single sizes of #4, 3/8", 1/2", and 3/4". Three 

recombined limestone with designed different gradations (Gl, G2, and G3) were also 

studied. 

4.2.1 Specific Gravity and Absorption 

The specific gravity and absorption of the coarse aggregate used in this study were measured 

according to ASTM C127. The measured specific gravity of limestone was 2.53 and 2.45 

under the SSD and OD condition, respectively. Absorptions of different coarse aggregate are 

listed in Table 4-2. 
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Results indicated that the absorption capacity of an aggregate declined with increased size, 

which is in consistent with fine aggregate results. The absorptions of graded coarse aggregate 

used in this study were close to the absorption capacities of 3/8" and 1/2" aggregate. 

Table 4-2 Coarse aggregate absorption 

Single-•sized Graded 

#4 3/8" 1/2" 3/4" G1 G2 G3 

Absorption (%) 3.77 3.22 3.15 2.76 3.07 3.14 3.26 

4.2.2 Void Content 

According to ASTM C29, the uncompacted void content of different coarse aggregate were 

measured by fill up the measuring container by shoveling aggregate inside with minimum 

compaction. The following equation can be used to calculate uncompacted void content of 

fine aggregate: 

Vn_CA = —— ——ÏSA- x 100% Equation 4-2 
^CA 

In this equation Vh-ca is the uncompacted voids (%), Vca is the volume of cylinder (mm3), 

Wqa is the weight of coarse aggregate in cylinder (g), and jca is the density of the aggregate 

(g/mm3), which can be calculated according to the specific gravity at OD condition from section 

4.2.1 (/ca = Gj6„cAxlO"3g/mm3). 

Figure 4-4 presented the void content of different coarse aggregate; results showed that 

smaller aggregates have lower uncompacted void content because of the smaller degree of 

particle interlocking. Results also indicated that an aggregate with gradation has lower void 

content than an aggregate with just one single size particles. The smaller particles can fill up 

the space between bigger particles in graded aggregate, and thus the space between aggregate 

particles will significantly decrease. 
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Figure 4-4 Void content of coarse aggregate 

4.2.3 Friction Angle 

Coarse aggregate friction tests were also performed to study the friction angle of different 

coarse aggregates based on the maximum angle formed by the aggregate pile. The friction 

angles of coarse aggregates are shown in Figure 4-5. 
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Figure 4-5 Friction angle of coarse aggregate 

Similar to the aggregate uncompacted void test, the friction angle test demonstrated that 

larger aggregates have higher friction because of the internal friction and interlock from the 

higher percentage of irregular shape particles, which also resulted in larger void content. No 

obvious difference of the friction angle between single size and graded coarse aggregate was 
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found in the test. The friction angles of the graded limestone used in the present study lay 

between the friction angle of 3/8" and 1/2" coarse aggregates. 

The comparison of the coarse aggregate friction angle and void contents showed that with the 

increase of size of coarse aggregate, both friction angle and void contents increase. This is 

because the increase of particles size results in a higher degree of interlocking from the 

irregular shape particles, which not only increases the friction angle, but also results in a 

lower degree of compaction. 



www.manaraa.com

85 

CHAPTER 5. PASTE RHEOLOGY TEST RESULTS 

In this chapter, the rheological performances of cement pastes were studied using the 

Brookfield rheometer. The effects of different w/c (0.30, 0.35, 0.40, 0.50, and 0.60) and 

different mixing methods (the Hobart versus the highshear mixer) were studied. Statistical 

analyses were performed to quantitatively study the effect of w/c on different rheology 

parameters. This can be used to discover the paste rheological properties for using in the 

concrete modeling study. 

The results showed that the rheology of cement paste from low to high w/c is significantly 

different, and that the relationship between rheology parameters and w/c can be expressed by 

an exponential equation. Previous studies examined the effects of using different mixers, 

which showed that cement paste mixed through the higher energy technique provided paste 

with better flowability (Yang and Jennings, 1995; Ferraris et al., 2001). Also, the effect of the 

mixer is different under different mixing procedure. In the present chapter, the rheological 

performance of cement paste mixed through Hobart and highshear mixers were studied, 

results were consistent with previous researches. The rheological parameters of cement paste 

mixed by highshear mixer will be used in the mortar and concrete rheology modeling study 

described in Chapter 8. 

5.1 Effect of w/c 

Water content is well known to have the most significant effect on the rheological 

performance of cementitious materials including cement paste, mortar and concrete rheology 

(Tattersall, 1991). The plasticity of cement paste can be attributed to a combination force 

between cement particles and the lubricating action of the water between them. The increase 

of water content causes the paste to become softer because it results in a greater dispersion of 

cement particles. The freedom of individual particles thus increases. Liberation becomes 

greater, and the mobility of the paste increases, which further causes the decrease of yield 

stress and viscosity (Popovics, 1982). 
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In the present research, cement pastes were mixed according to the procedure as described in 

Chapter 3. The rheometer tests were performance based on the procedure with a preshear 

period and testing loop with maximum shear rate of 50s"1 as shown in Figure 3-10 (a). The 

flowabilities of cement paste at different w/c (from 0.30 to 0.60) were compared. 
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Figure 5-1 Effect of w/c on paste rheology 

As shown in Figure 5-1, the shapes of the flow curve for cement paste at different w/c were 

significantly different. It was found that down curves were generally observed to be below up 

curves, which indicated that less shear stress was required to maintain the same shear rate. 

This indicated structural breakdowns in the cement paste and the hysteresis phenomenon 

were obtained. The extent of thixotrophy behavior (hysteresis areas between the up and down 

curves) increased when w/c declined. Results showed that a significant thixotrophy property 

was observed at low w/c (0.4), which indicates that higher energy was required to break 

down the structure inside the cement particle, while at high w/c (0.6), thixotrophy was hardly 

observed. It was also found that, regardless the shape of up curves, the down curves generally 

performance linearly. The Bingham parameters of the broken down material were calculated 

from the down curves in the present study as shown in Figure 3-11. Results demonstrated 

that decreased w/c increased both yield stress (interception) and viscosity (slope) 

significantly. This indicates that more force will be required to initiate the flow and more 

force will be necessary to maintain a higher flow rate because of stronger inter-particle forces 
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acting of cement particles. These results agreed with the results from other researchers 

(Tattersall and Banfill, 1983). 

5.2 Effect of Mixing Method 

Previous research stated that low-shear mixing produces cement pastes which behave as two-

phase systems, in which case suspensions of cement stay in water. While high-shear mixing 

produces cement paste of a different nature, the paste tends to behave as a single-phase 

material (Bartos, 1992). 

A comparison of cement paste mixing from different mixers (a Hobart mixer and a highshear 

mixer) was also made in present research. Results showed that in cement pastes using a 

Hobart mixer, a higher and leaner curve is observed and the hysteresis loops are bigger than 

cement pastes mixed by a high shear mixer (Figure 5-2). These results agree with previous 

research by Williams et al. (1999), which stated that because of the higher mixing speed and 

stronger mixing energy during mixing process, the highshear mixer would break down more 

cement paste inter-particle force and the paste can be mixed better. Also, the yield stress and 

viscosity of cement paste from the Hobart mixer is higher than from the highshear mixer 

because of the lower amount of mixing energy. 
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Figure 5-2 Effect of mixer on paste rheology 
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5.3 Results and Discussion 

The Bingham model rheology parameters of cement paste at different w/c and from different 

mixer are summarized in Figure 5-3. Results show that when the w/c of the paste increased 

from 0.30 to 0.60, the viscosity fell from around 7 to 0.1 PaS, while yield stress decreased 

from around 200 to 10 Pa. The thixotrophy dropped dramatically from over 10000 Pa/s to 

almost zero. The same tendencies were observed with paste mixed through either the Hobart 

mixer or the high shear mixer. Cement pastes mixed by the Hobart mixer tended to have 

larger value of yield stress, viscosity and thixotrophy comparing to pastes mixed through the 

highshear mixer. Test results were consistent with previous research on cement pastes made 

by different mixing procedures, which showed that a change from the least severe to the most 

severe mixing procedure caused both the yield stress and plastic viscosity to decrease by 

about 60% and the width of the hysteresis loop decreased at the same time (Roy and Asaga, 

1979). 

At low w/c (0.30 and 0.40), pastes mixed with the highshear mixer had larger yield stress 

values compared to pastes mixed through the Hobart mixer. This was probably caused by the 

fact that when cement pastes were relatively dry, they can not be mixed thoroughly by a 

Hobart mixer and did not perform with liquid-like behavior. However, the viscosity and 

thixotrophy of paste mixed with the Hobart mixer still showed much higher values compared 

to cement paste mixed by the highshear mixer. 
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In order to develop the mathematical equations for further modeling studies in predicting 

mortar and concrete rheology, statistical analyses were performed to quantitatively study the 

effect of w/c on paste rheology. Exponential relations were chosen according to previous 

research (Tattersall 1991; Wallevik and Wallevik, 1998). It was found that both yield stress 

and viscosity decrease exponentially as w/c increases. Best regression curves and equations 

used in fitting the viscosity and yield stress from different w/c were shown in Figure 3-5. 

O Hobart mixer 

Highshear mixer 

S. 200 
S69W/C 7856.9e 

R = 0.9946 S 150 

.2 100 -7.5294W/C y = 118; ,5e 

0.9235 

0.2 

CO 
e s  
o. 

£4 ib 
o o 
V) 

0.3 0.4 0.5 
w/c 

(a) Yield stress 

0.6 0.7 

K 
O Hobart mixer 

• Highshear mixer K 

\ V = 148.15e"10' 
*2 = 0.993 

6w/c 

L 

= 191.75e 
R2 = 0.9' 

12.838w/c 

57 

0.2 0.3 0.4 0.5 0.6 
w/c 

0.7 

(b) Viscosity 

Figure 5-4 Rheological parameters with different w/c 

According to Williams et al. (1999), comparing to standard mixing procedure follow ASTM 

C305 using Hobart mixer, cement paste experiences more shear energy and structure 
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breakdown in mortar and concrete mixing due to the interaction with aggregate. Cement 

paste mixed by highshear mixer at moderate speed was found to be similar to paste from 

concrete. The statistical equations (Equation 5-1, and 5-2) for rheological parameters of 

cement paste mixed by highshear mixer will hence be used in future mortar and concrete 

rheology modeling study in Chapter 8. 

r0p = 7856.9e"n'669H'/c Equation 5 -1 

r] p = 191.75e~12S38w/c Equation 5-2 

In these equations r 0 p  and r j p  are the yield stress (Pa) and viscosity (Pa s) of cement paste. 

Preliminary research has been done to study the testing procedure of rheometer (Appendix II). 

Two different maximum shear rates of 50s"1 and 100s"1 were used in the rheology 

measurement. Results showed that in cement pastes with high w/c (0.5 to 0.6), down curves 

at high shear rates (larger than 70s"1) did not follow the Bingham model any more, although 

the lower portions of down curves were still linear and can be used to calculate the Bingham 

parameters. This phenomenon was different from that observed during the low maximum 

shear rate test because of the different degree of structural breakdown throughout the testing 

period. Another reason may be the current interference in the measurement container when 

the mixing vane was rotating at very high speeds. The effect of the testing procedure is not 

further discussed because it is out of the scope of this research. In the present study, only 

results from the testing procedure with a maximum shear rate of 50s"1 were considered. 

Additional research has also been performed to study flowability using mini-slump cone tests 

for paste with different w/c and different mixing methods. Results showed that the flow 

percentage of different cement paste can also be used to reflect the rheology behavior of the 

cement paste. A good correlation between flow percentage from the mini-slump cone test and 

the yield stress of various pastes was found. This trend is consistent with previous research 

(Roussel et al., 2005). The comparison of the rheometer test results and the mini-slump cone 

test results are summarized in Appendix III. 
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CHAPTER 6. MORTAR RHEOLOGY TEST RESULTS 

In this chapter, the effects of fine aggregate characteristics on the rheology of mortar are 

investigated. Different sand content (s/c=l, 2, and 3), w/c (from 0.2 to 0.62), type (riversand 

and limestone), size (#100, #50, #30, #16, and #8) and gradations of fine aggregate (Gl, G2, 

G3, G4, and graded standard sand) were considered. 

Mortars were mixed according to the procedure as described in section 3.3.2. The Brookfield 

rheometer was used to measure the mortar rheological parameters of different mortars 

according to the procedure as shown in Figure 3-10 (b), with a preshear period and a testing 

loop. The flow percentages of mortars were also measured by a flow table test as specified in 

ASTM C1437. The results were compared with the measured rheological parameters. 

6.1 Effect of w/c 

Three to five w/c ranging from 0.20 to 0.62 were used for each type of sand. These ratios 

were chosen in order to make mortar with proper flowability and measurable rheological 

parameters. Neither too low nor too high w/c were desired, because they can cause low 

consistency or segregation, which are inappropriate for rheology measurement. 

Figure 6-1 (a) demonstrated typical flow curves of mortar samples made with different w/c. 

For each flow curve, there is a thixotrophy loop, formed with the up-curve due to the 

increased shear rate and the down-curve due to the reduced shear rate. The thixotrophy loop 

area indicated the degree of test material interconnected structure broken down during testing 

process. Generally, the thixotrophy phenomenon becomes more significant as the mortar 

becomes dryer (decreased w/c). The test results showed that the down curves are generally a 

straight line, which can be described with the Bingham model. Therefore, in the present 

study, the yield stress and viscosity of a tested material are calculated from the down curves. 

The thixotrophy is not considered in the models within this study. 

Figure 6-1 (b) shows the down parts of the flow curves of mortars with different w/c. Similar 

to cement paste, both the yield stress and viscosity of the mortars increased when the w/c 
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decreased. This means that a larger force is required to initiate the flow and to maintain a 

high flow rate because of the stronger interparticle forces acting between cement particles. 
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Figure 6-1 Effect of w/c on mortar rheology 



www.manaraa.com

94 

6.2 Effect of Sand Type 

As summarized in Chapter 2, the shape and texture of the aggregate particles also affects 

mortar/concrete workability. Spherical particles generally result in more workable mortar. In 

order to study the effect of shape on mortar rheology, two types of aggregate - riversand and 

crushed limestone fine aggregate (simplified as limestone) were chosen for this study. 

As shown in Figure 6-2, the flow curves of mortar with limestone as aggregate (dash lines) 

generally lie above flow curves of mortar with riversand for a given aggregate content, which 

indicates that limestone provides mortar with lower flowability than riversand. 
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Figure 6-2 Effect of sand type on mortar rheology 

Examples of the calculated viscosity and yield stress of mortar with different fine aggregate 

are shown in Figure 6-3. For a given mix proportion and a given size of aggregate, limestone 

provides the mortar with higher yield stress and viscosity. This result is expected because the 

uncompacted voids in limestone are larger, which requires more cement paste to fill up the 

space between aggregate particles. As a result, less cement paste was available to coat the 

aggregate particles, thus reducing mortar flow. In addition, the spherical particles of 
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riversand could act as "ball bearings", while angular particles provided mortar with more 

mechanical interlock or higher internal friction, thus requiring more energy for initiating and 

processing flow (Mindess et. al., 2003). 
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Figure 6-3 Rheological parameters of mortar with different type of sand 

6.3 Effect of Sand Content 

In the present study, three different s/c were chosen to study the effect of aggregate content 

on mortar rheology. As shown in Figure 6-4, the flow curves of mortars with different fine 

aggregate contents were significantly different. It was observed that when the fine aggregate 

content increased, both the yield stress and viscosity of the mortar increased. This was caused 
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by the higher degree of friction and interlock of solid particles, which reduced mortar 

flowability. Figure 6-4 also showed that when the s/c increased from 1 to 3, the flow curve 

become rough because test errors were caused by the direct contact of individual fine 

aggregate particles with the rheometer paddle. 
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Figure 6-4 Effect of s/c on mortar rheology 

Examples of the calculated Bingham parameters for different mortars were summarized in 

Figure 6-5. It can be observed that for mixtures with a low s/c (Figure 6-5 (a-1) and (a-2)) the 

difference in mortar rheology resulting from different sizes of aggregate was insignificant. 

However, this difference became obvious when the s/c increased (Figure 6-5 (b-1) and (b-2)) 

due to the increasing of volume concentration of aggregate. The changes in the yield stress 

are more significant than the viscosity changes. 
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Figure 6-5 Effect of sand and w/c on mortar rheological parameters 

6.4 Effect of Sand Size 

Typical rheology test results of mortars made with different size of aggregate sizes are shown 

in Figure 6-6. For a given w/c and amount of fine aggregate, the mortar made with larger 

sand had a higher flowability. It was observed that when the size of aggregate increased from 

#100 (0.15mm) to #8 (2.36mm), the flow curve became rougher. This could be attributed to 

the test error caused by the direct contact of aggregate particle with the rheometer paddle. 

The error might become more significant when the ratio of the aggregate size to the diameter 

of the rheometer vane (15mm) becomes high. 
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Figure 6-6 Effect of sand size on mortar rheology 

The rheological parameters of mortar with different size of sand were also calculated. As 

shown in Figure 6-7, a smaller aggregate generally results in mortar with higher yield stress 

and viscosity. The much higher surface area results in a smaller excess paste thickness to coat 

the aggregate and provide flow. This result agrees with previous findings that the decreasing 

of maximum particle size generally increases the water demand (Mehta and Monteiro, 1993). 
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6.5 Effect of Sand Gradation 

In order to provide the mortar with enough workability, a sufficient amount of cement paste 

is needed to fill up the space between aggregate particles. For a given paste content in mortar, 

less space (void) between aggregate particles requires less paste to fill it up, thus leaving 

more paste to coat the aggregate particles and to provide the mortar with improved 

flowability. Graded aggregate can improve the filling condition of the space between 

particles, hence resulting in a higher degree of packing. Figure 6-8 shows that flow curves of 

mortar with graded aggregate lay below those of mortar with single-sized aggregate. This 

confirms the fact that graded aggregate significantly improves the workability of mortar 

compared to single-sized aggregate. 
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Figure 6-8 Effect of sand gradation on mortar rheology 

According to the relationship between the fineness modulus of aggregate with the calculated 

rheological parameters as shown in Figure 6-9, graded aggregate provides the mortar with a 

lower yield stress and viscosity than single-sized aggregate at a similar fineness modulus. 

Graded aggregate had a lower amount of uncompacted void content and hence requires less 

cement paste to provide the same flow. 
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Figure 6-9 Rheological parameters of mortar with different graded or single-sized sand 

6.6 Flow Table Test and Rheological Parameters 

A modified flow table test based on ASTM C1437 (as shown in Appendix IV) was 

performed to further verify the trends observed from the mortar rheology tests. These 

comparison of flow table results and rheology test results (as shown in Appendix V) are 

presented in Figure 6-10. 
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Figure 6-10 Comparison of flow table test results with rheological parameters 

The relationship between the flow table test and the rheometer parameters showed that the 

flow percentage from the flow table test has a strong correlation with yield stress and 

viscosity at relatively low aggregate contents whereas material can perform in liquid like 
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behavior. Figure 6-10 also showed that at relatively low aggregate content (s/c=l and 2), a 

high flow percentage correlated with lower yield stress and viscosity. When the aggregate 

content is high (s/c = 3), there are no clear tends. High aggregate content levels means that 

there was not enough paste to fill up the space between aggregate. Aggregate was observed 

to be not able to be fully coated in most of the cases, which resulted in the non-liquid like 

performance of the mortar, and thus the rheological parameters of Bingham liquid are 

inappropriate. Some data sets with zero viscosity and yield stress value were observed. In this 

case, the rheometer test is not appropriate. 

6.7 Discussion 

The results showed that the effect of w/c on mortar rheology is very substantial and larger 

w/c generally result in lower viscosity and yield stress due to the more workable matrix 

(paste). In addition to the w/c, aggregate size, gradation, and volume fraction significantly 

influence mortar rheology. Particle size distribution and aggregate gradation are important 

characteristics because they can determine the paste requirement for a workable mortar. Finer 

aggregate normally provides mortar with lower workability because of the increase of surface 

area and thus the need for more paste to coat the aggregate particle. On the other hand, 

graded aggregate can considerably improve the workability of mortar because the optimized 

packing of aggregate particles results in fewer voids that need to be filled by cement paste to 

provide same flow. 

The study of different types of aggregate also illustrated that rounded and smooth surface 

aggregate (riversand) can be used to improve mortar workability. With the increase of 

aggregate volume content, the flowability of mortar decreases, which is caused by the higher 

degree of friction and interlock of aggregate particles. For mortar with low aggregate volume 

content, the effect of aggregate size/gradation/shape on the mortar rheology may not be 

significant, but the effect will become significant as the volume of aggregate increases. 
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CHAPTER 7. CONCRETE RHEOLOGY TEST RESULTS 

In this chapter, the rheological performances of various concretes were studied using a 

portable IBB rheometer. The effects of coarse aggregate content (CA% = 37.8, 40.8, and 

44.0), sand-to-cement ratios (s/c = 1.75, 2.21, and 2.60) and coarse aggregate gradations 

(single-sized coarse aggregate at #4, 3/8", 1/2", and 3/4"and three graded coarse aggregate 

Gl, G2, and G3) were studied. 

Concretes were mixed according to the "3-3-2" procedure as described in section 3.3.3 and 

rheometer tests were performed based on the procedure (complete with a preshear period and 

testing loop) as shown in Figure 3-14. The rheology measurement results were compared 

with the standard slump cone test. The unit weight and seven-day compression strength from 

each batch of concrete were also measured. 

7.1 Effect of Coarse Aggregate Content 

The flow curves in Figure 7-1 showed that the torque applied on the paddle increases with 

the rotation speed. The relationship was almost linear, which indicated that a yield term and 

viscosity term related to the Bingham rheology model can be obtained. As it was expected, 

the flow curves are not as smooth as observed in cement paste or mortar, due to the error 

cause by the direct contact of coarse aggregate with the rheometer paddle. Generally, as the 

fresh concrete became stiffer, the correlation coefficient to the Bingham model was slightly 

reduced, probably because the laminar flow assumption was no longer quite correct as the 

volume content of solid proportion increase (Nehdi and Mindess, 1996). It was also appeared 

that, similar to cement paste and mortar, the flow curve of concrete mixes demonstrated 

thixotrophy loops (i.e., up curves above down curves) which indicate that a certain degree of 

structural breakdown also occurred in the concrete throughout the testing process. 

Groups of concrete were designed to have the same mortar properties (same s/c and w/c for 

mortar) but different coarse aggregate proportions (CA%). As shown in Figure 7-1, the flow 

curves of concretes with the same mortar properties but different coarse aggregate content 
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were significantly different. The greater portion of coarse aggregates in concrete provides 

larger surface area and requires a higher quantity of cement paste or mortar to coat all of the 

coarse aggregate particles and to fill the interstitial spaces between particles. As a result, 

when the coarse aggregate content increases, the yield stress and the viscosity of concrete 

both increase. 
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Figure 7-1 Effect of coarse aggregate content on concrete rheology 1 

7.2 Effect of Fine Aggregate Content 

When fresh concrete is considered as a two-phase material consisting of mortar and coarse 

aggregate, the rheological properties of the matrix (mortar) can significantly affect the 

rheological properties of the composite (concrete). According to the results as shown in 

Chapter 6, the fine aggregate content, i.e. s/c, strongly influenced the rheology of mortar. The 

influence of mortar's rheology properties on concrete is examined in this chapter. The 

1 In order to clearly show the effect of and the coarse aggregates on flow curves, only the down curves and the 
best fitting lines for linear regression of down curves will be shown from this figure and later on within this 
chapter. In this figure, Mix7, Mix8, and Mix9 referred to concrete mix design identification as shown in Table 
3-4 (Mixl through Mix9), M3 referred to mortar design, G2 referred to size or gradation of coarse aggregate 
used in concrete (single-sized aggregate #4, 3/8", 1/2", 3/4", or graded aggregate Gl, G2, and G3). 

Mix8 (CA%=40.8) 

Mix? (CA%-37.8) 

M3 (s/c-2.60, w/c=0.50), G2 
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factorial mix design method considers mortar rheology effect was employed with the 

concrete mixes, the concretes were designed to have same coarse aggregate content but with 

different properties of mortar inside. 
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Figure 7-2 Effect of fine aggregate content on concrete rheology 

A comparison can be made between concretes with same coarse aggregate content (CA%) 

but different mortar properties, resulting from different s/c and w/c. The results shown in 

Figure 7-2 indicated that higher s/c resulted in flow curves above concrete with lower s/c. 

The results showed that when the fine aggregate content increases, the yield stress and 

viscosity of concrete both increase, even though the Mix9 mix has a higher w/c (0.50) than 

mix Mix3 and Mix6 (0.45). This phenomenon can be attributed to the fact that the yield 

stress and the viscosity of mortar increase as the s/c of mortar increases. Results also showed 

that comparing to viscosity, yield stress showed more difference through different mortar 

design, which is consistent with the rheological parameters difference for different mortar as 

presented in Table A-4. 

M ix9 (M3 : s/c=2.60 
w/c=0.50) A 

Mix6 (M2: s/c=2.21 
w/c=0.45) 

Mix3 (M1i s/c=1.75 
w/c=0.45) 
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7.3 Effect of Coarse Aggregate Size and Gradation 

The particle size distribution (or grading) of a coarse aggregate supply is an important 

characteristic because it determines the paste requirements for a workable concrete. In order 

to study the effect of coarse aggregate gradation and size, four different single-sized coarse 

aggregate (#4, 3/8", 1/2" and 3/4") and three graded coarse aggregates (Gl, G2, and G3) 

were chosen for the selected mix design, and the rheology of different concrete mixes was 

examined. 
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Figure 7-3 Effect of coarse aggregate grading on concrete rheology 

As shown in Figure 7-3, the difference between graded and single size coarse aggregates was 

obvious. Provided same mix design, the down curves of the three concrete mixtures with 

graded coarse aggregate lay below concrete mixtures with uniform size coarse aggregate, 

which indicates that aggregates with gradation provide concrete with better flowability, this 

phenomenon is in agreement with previous researchers (Mindess et. al., 2003). When 

aggregate with a range of different sizes is used, the smaller particles can fill up the spaces 

between the larger particles, thereby decreasing the void space and lowering the amount of 

paste or mortar required for filling the spaces. Thus, excess amount of paste or mortar can 
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coat the aggregate surface and improve concrete workability. Results also showed that in this 

chosen concrete mix design (Mix6), a higher flow curves were observed with the smaller size 

of aggregate, which indicated that the flowability of concrete decrease with the decrease of 

single size coarse aggregate used. 

The parameters related to Bingham rheology parameters from different concrete mixes can 

be calculated based on the down curve from the thixotrophy loops using the best-fitting linear 

equation. The calculated yield stress related parameter (interception (G)) and viscosity 

related parameter (slope (H)) from concrete with the same mix design but different sizes of 

coarse aggregate were summarized in Figure 7-4. Results showed that both the slope and 

interception decreased with increased aggregate size. This is consistent with the general 

knowledge that a bigger size of aggregate will result in higher flowability because of the 

lower surface area that needs to be coated. However, the trend in slope is not as clear as in 

interception, which might be caused by the fact that the effect of this coating thickness will 

counteract the interaction between aggregate. A larger size aggregate may cause a higher 

degree of friction and interlocking between particles; thus, the effect of the size of coarse 

aggregate on concrete rheology sometimes can not be clearly observed. Concrete with graded 

coarse aggregate had lower rheological parameter values than concrete with single-sized 

aggregate. Graded aggregate can pack better, which requires a lower amount of paste to fill 

the spaces and therefore provides concrete with better workability. 
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Figure 7-4 Rheological parameters of concrete with different graded or uniform size coarse aggregate 
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7.4 Results and Discussion 

The properties of 23 concrete mixtures are shown in Table 7-1 : 

Table 7-1 Concrete tests results 

Symbol Slump (in.) G(Nm) H (NmS) R2 Unit weight (pcf) fc/ (psi) 

Mix 1-3/4" 6.50 2.57 6.06 0.955 143.8 5383 

Mixl-Gl 7.75 2.13 181 0.985 144.2 5623 

Mixl-G2 8.50 2.18 5.37 0.979 142.2 5408 

Mixl-G3 8.25 1.99 5.06 0.998 142.4 5197 

Mixl-#4 6.50 3.34 5.72 0.995 140.0 5792 

Mix2-G2 7.50 2.60 5.73 0.985 140.0 5351 

Mix3-3/4" 4.75 4.99 8.02 0.938 144.6 5291 

Mix3-Gl 6.75 3.45 6.42 0.987 144.6 5322 

Mix3-G2 TOO 3.18 7.24 0.985 144.4 5273 

Mix3-G3 7.50 3.22 7.49 0.986 142.4 5267 

Mix3-#4 4.00 4.41 7.98 0.989 141.8 5731 

Mix4-G2 5.50 159 5.78 0.988 138.2 4990 

Mix5-G2 4.00 5.70 6.30 0.950 140.6 4918 

Mix6-3/4" 2.50 8.71 8.90 0.926 144.0 5332 

Mix6-Gl 4.00 6.25 7.50 0.962 1418 5290 

Mix6-G2 100 7.82 8.29 0.972 144.8 5308 

Mix6-G3 4.50 5.29 7.07 0.978 144.0 5358 

Mix6-l/2" 1.75 12.69 9.12 0.975 145.0 5343 

Mix6-3/8" 1.25 13.55 10.84 0.986 1418 5985 

Mix6-#4 1.50 14.27 10.12 0.984 143.8 5456 

Mix7-G2 5.00 103 5.19 0.986 139.6 5239 

Mix8-G2 zoo 6.83 7.14 0.981 1418 5880 

Mix9-G2 1.50 8.98 8.15 0.982 1412 5576 

Notes: G is the interception, H is the slope, and R2 is the coefficient of correlation of linear regression. 
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The calculated interception and slope values from concretes with same gradation (G2) but 

different mix designs are summarized in Figure 7-5. As shown in this figure, a clear trend 

was observed that generally the yield term (interception G) and viscosity term (slope H) both 

increased with the sand content (s/c) or coarse aggregate content (CA%). These phenomena 

demonstrated that within a certain range of aggregate proportion, an increase of aggregate 

content (which can be either coarse aggregate or fine aggregate) will result in lower 

flowability of concrete, provided the other portions of the concrete mix design remain fixed. 

Results indicated that when considering the effect of aggregates on workability, two factors 

are important: the amount of total aggregate and the relative proportions of fine to coarse 

aggregate. 
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Figure 7-5 Rheological parameters of concrete with different aggregate proportion 

The effects of aggregate gradation on concrete with the same mix designs are summarized in 

Figure 7-6. Results showed that regardless of the concrete mix design, concrete with graded 

coarse aggregate provides concrete with better flowability, i.e., lower interception and slope 

values. As shown in the figure, the calculated yield and viscosity parameter from concretes 

with different size and gradation of coarse aggregates indicated that graded aggregate 

provides concrete with better flowability comparing to single size aggregate. As shown in the 

figure, concrete with graded coarse aggregate had lower rheological parameter values than 

concrete with uniform size aggregate. Graded aggregate generally have better packing, which 

requires a lower amount of paste to fill the spaces and therefore provides concrete with better 

workability. 
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The effect of size on concrete rheology, however, was not clearly observed in all mixes in 

present research. Concrete with the same mix design but smaller sizes of coarse aggregate 

generally increase yield stress and viscosity because of the increase of the aggregate surface 

area. However, the effect of coarse aggregate friction might counteract with the effect of 

coating thickness on aggregate. An increase of size of aggregate used in present study 

generally resulted in higher friction angle. As a result, the friction of aggregate inside 

concrete might be stronger because of the increase of aggregate size. Results in Figure 7-6 

showed that the concrete rheological performance might not have significant difference 

because of the using of different size of coarse aggregate. 
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Figure 7-7 Comparison of slump test results with rheological parameters 
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Based on the measured results (Table 7-1), the relation between slump value and rheology 

related parameters were examined. As shown in Figure 7-7, the slump value was found to 

have a strong correlation with the interception (with a very high R2 value of 0.93), while the 

relation between slope and slump value was not significant. This is consistent with previous 

research, which indicated that the slump value can be strongly correlated with yield stress of 

fresh concrete; however, it can not pickup the change on viscosity (Murata and Kikukawa, 

1992; Tattersall, 1991). These results support the need to use the rheometer test fully reflect 

the concrete flowabilities. 

The unit weight of fresh concrete and seven-day compression strength of concrete was 

measured on each batch of concrete. The results as shown in Table 7-1 indicate that no clear 

pattern of effect of aggregate or mix design of concrete on these two parameters was 

observed within the selected concrete mixtures. 
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CHAPTER 8. MODELING OF MORTAR AND CONCRETE 

RHEOLOGICAL BEHAVIOR 

The degree of importance of effects from various factors on mortar and concrete rheology 

was evaluated. Theoretical parameters relate to the rheological properties of mortar and 

concrete were developed. Statistical analyses were used to evaluate the significance of 

different parameters and to finalize the rheology model. This chapter contains four sections. 

• In the first section, an artificial neural network (ANN) method was used to evaluate 

the relative degree of importance of the factors that may affect the rheology of mortar 

and concrete. Results of this study can also be used to predict rheological properties 

of mortar and concrete. 

" The second section discusses how and why the properties and thickness of suspension 

(paste or mortar), aggregate friction and volume fraction affect the rheology of 

composite materials (mortar and concrete). The parameters that relate to mortar and 

concrete rheology were developed, the approach to modeling mortar and concrete 

rheology is also presented. 

• In the third section, the rheology of mortar is studied; the excess paste thickness for 

mortar was calculated according to the excess paste theory. A statistical analysis was 

conducted to predict the rheology of mortar from the nominal excess paste thickness 

and paste rheological parameters. 

• In the last section, according to the excess paste theory and two-phase theory 

(concrete was considered as two phases of mortar and coarse aggregate), the excess 

mortar thickness for was calculated. A model was developed to predict the rheology 

of concrete using the rheological parameters of mortar, nominal thickness of excess 

mortar and the friction of coarse aggregate. 

Models developed from this chapter can not only be used for concrete rheology prediction, 

but also have the potential to be used to design concrete with desirable rheology parameters. 
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8.1 Study of Major Factors Affecting Concrete Rheological Behavior 

As shown in previous chapters, the mix component, especially aggregate, significantly 

affects mortar and concrete rheology. Increasing the amount of aggregate content results in 

an increase in yield stress and the viscosity of mortar and concrete because of the decrease of 

the paste or mortar thickness coating on the aggregate to provide flow. Aggregate with lower 

uncompacted void content generally reduces concrete yield stress and viscosity. Graded 

aggregate can considerably reduce yield stress and viscosity of mortar and concrete because 

it packs together better, resulting in fewer voids and thus requires less paste or mortar to 

provide same flow. Irregular shape and rough surface aggregates have higher uncompacted 

void content and higher friction angles than round and smooth aggregates. Increasing the w/c 

results in paste with low yield stress and viscosity, this will further reduce the rheological 

parameters of the concrete composite. 

A statistical analysis was performed to examine the importance of effects from different 

factors which affect the rheology of mortar and concrete. Since materials like mortar and 

concrete are composite materials, different parameters from their compositions might be 

related to each other. For example, aggregate with higher angularity will not only require a 

larger amount of paste because of the increase of uncompacted voids, but will also increase 

the friction force between the aggregate. These kinds of different but interrelated factors 

make it difficult to decide upon the analysis parameters. The ANN analysis method was 

therefore used to select the parameters used in the modeling analysis later in this section. 

8.1.1 Effects on Mortar Rheology 

The neural network model is inspired by the biological structure of neurons and the internal 

operation of the human brain, which consists of multiple layers of interconnected linear or 

nonlinear processing units operating in parallel fashion. ANN had already been used in 

concrete studies such as SCC mix design (Nehdi et al., 2001) because of its advantages in 

handling multi-parameter situations. A brief description of ANN and some of the results from 

the ANN analysis were shown in appendix VII. 
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ANN typically consists of many simple processing units, which are wired together in a 

complex communication network. In the modeling for mortar rheology, five different 

parameters were selected as the input layer, which covered the mix design of mortar and the 

properties of the aggregate used. The five parameters used are s/c, w/c, the fineness modulus, 

the friction angle and the uncompacted void content of fine aggregate. Several network 

architectures were tried (using a trial-and-error approach). The final network as shown in 

Figure 8-1 was used for the present study. 

s/c Yield stress (Pa) 

w/c 

Viscosity (Pa s) 

FMFA 

Flow (%) 

Output layer Input layer Hidden layer 

Figure 8-1 Architecture of neural network model of mortar rheology 

The actual versus predicted values of mortar rheology parameters (as shown in Appendix VII) 

demonstrated that this model can capture the relationship between the input and output 

parameters, and the model can be used successfully to predict the rheology of mortar from 

original mix design and aggregate properties. A relatively high R2 value (around 0.90) was 

found through the model. 

The effect of five parameters (the s/c, w/c, the fineness modulus (FMpA), friction angle (@FA) 

and uncompacted void content of fine aggregate (Vn.FA)) is shown in Figure 8-2. Results 

indicated that, as expected, the w/c and the aggregate uncompacted void have the most 

significant effects on the rheology parameters. These two parameters directly affect the 

excess paste thickness and the paste rheological properties. However, the effect of the 

friction angle of the fine aggregate did not show any significant difference, which indicates 

that within the range of sand used in this research, the fine aggregate friction angle either did 
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not have a significant effect on the rheology of mortar or the effect was concealed by the 

other parameters used in the model. 
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Figure 8-2 Effects of different parameters on mortar rheology 

According to the analysis from this study, the rheological parameters of cement paste and the 

excess paste thickness might have significant influence on mortar rheology, which shall be 

considered in the model for predicting the rheology of mortar. 

8.1.2 Effects on Concrete Rheology 

Similar to the mortar study, six parameters were selected as the input layer for the concrete 

studies. These parameters covered the mix design of concrete and the properties of the 

aggregate used, and they are coarse aggregate content (CA%), fine aggregate content (s/c), 

water content (w/c), the fineness modulus (FMCA), the friction angle (&CA)&nd the 

uncompacted void content (V„.CA) of coarse aggregate. After several network architectures 

had been attempted according to the trial-and-error approach, the network as shown in Figure 

8-3 was used for the present study. 
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Figure 8-3 Architecture of neural network model of concrete rheology 

The actual versus predicted value of the concrete rheology parameters (Appendix VII) 

demonstrated that this model can capture the relationship between input and output 

parameters. The model can be used successfully to predict the rheology of concrete from the 

original mix design and aggregate properties. A relatively high R2 value (higher than 0.90) 

was found through the model. 

The effect of parameters including CA%, aggregate friction angle and the fineness modulus 

of aggregate was shown in the Figure 8-4. Results indicate that the coarse aggregate content 

has a significant effect on the rheology parameters, because it directly determines the mortar 

thickness. The size of the aggregate also influences the rheology of concrete because of the 

decrease or increase of the excess paste thickness. The aggregate friction angle affects the 

rheology of concrete, at least among the coarse aggregates used in this research. Its effect is 

very significant, because an increasing aggregate friction angle increases the force of friction 

between aggregates. The s/c and w/c also showed different affects on concrete rheological 

parameters because they decided the rheological performance of the matrix of the composite 

- mortar. 
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Figure 8-4 Effects of different parameters on concrete rheology 

The analysis in this section indicated that the ANN model can provide us information 

concerning how the mortar thickness, mortar rheology and coarse aggregate friction angle 

factors might have significant effects on the rheology of concrete, which should be 

considered in further modeling studies. 

The analysis in the present section provided a useful guide in the modeling of mortar or 

concrete rheology, especially in choosing the parameters for the theoretical study. Results 

also showed that the ANN model can be successfully used to predict the rheology of concrete 

and mortar from their original mix design and aggregate properties. The model developed in 

this section also have very good potential for practical use as a tool to design concrete 

according to desired rheology parameters. 

8.2 Approach to Predict Mortar and Concrete Rheology 

8.2.1 Mortar and Concrete Rheology Model 

The research in last section indicated that the rheology of a suspension - such as a cement 

paste or mortar - can determine the rheology properties of the whole composite (mortar or 
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concrete). The volume concentration of a suspended material (aggregate) can significantly 

influence the rheology of the composite. Meanwhile, aggregate properties, including size, 

gradation, uncompacted void content and friction angle aggregate also proved to have 

important effects on mortar and concrete rheology. However, models with efficient 

parameters needed to be found and applied in a successful rheology model. 

As mentioned in Chapter 2, many researchers have studied the rheological performance of 

composite materials including concrete. Different models have been proposed to predict 

concrete rheology. Previous research illustrated that the rheology of concrete or mortar will 

be significantly affected by the "gap" between aggregate (Ferraris and de Larrard, 1992). 

According to Kurokawa et al. (1996), the rheology parameters of concrete are related to the 

aggregate concentration inside the concrete, the friction between the aggregate inside mixture 

and the volume fraction of aggregate. When the concrete mixture is moving, the pieces of 

aggregate have the chance to contact each other because of the deformation of the suspension. 

The force between contacted particles is therefore related to the friction between aggregate 

particles and the volume fraction of the aggregate, which provides the chance that the 

aggregate particles in contact with each other. Topcu and Kocataskin (1995) found that 

concrete rheology depended upon the characteristics of the mortar and the coarse aggregate 

phases. In other words, when considering concrete rheological performance, mortar can be 

considered as one whole phase while coarse aggregate considered as another phase. Thus, the 

rheology of concrete is affected by both the thickness of the layer coating the aggregate 

particles and the friction between the aggregate particles. In the consideration of paste or 

mortar thickness and the friction between aggregate particles, a model, shown in Figure 8-5, 

is proposed. 

According to two-phase theory (Topcu and Kocataskin, 1995), fresh concrete (or mortar) can 

be considered as a composite material composed with different size and shape of coarse 

aggregate (or fine aggregate) coated with mortar (or paste), similar approach can hence be 

used in mortar and concrete rheology model development. Assume all coarse (or fine) 

aggregate particles are evenly dispersed in the mixture and separated from each other, a fresh 

concrete (or mortar) (case (I) as in Figure 8-5) can be simplified as irregular shape particles 
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each coated with layer of mortar (or paste) which were uniformly dispersed in the whole 

material as shown in Figure 8-5 (II). Case (II) can be further simplified as contribution from 

sphere particles coated with same thickness of mortar (or paste) and contribution from coarse 

(or fine) aggregate friction because of the irregular shape of particles according to Kurokawa 

et al. (1996) as shown in case (III-a) and (Ill-b). In case (Ill-a), coarse (or fine) aggregate was 

assumed to be coated by same thickness of mortar (or paste); aggregate particles was in 

spherical shape and with smooth surface, which means there is no friction between aggregate 

particles. In case (Ill-b), a material with just aggregate particles was studied, friction caused 

by the irregular shape and unsmooth surface was the only factor considered. In this model, 

concrete and mortar rheology can be considered as a result of two parts: (a) the rheology 

contributed by spherical coarse aggregate particles coated with a uniform mortar (or paste) 

layer and (b) the rheology contributed by the friction between coarse (or fine) aggregate 

particles. 

Figure 8-5 Simplification of the modeling 

According to the proposed model, the rheology of the concrete or mortar can be decided by 

both from spacing and from friction as shown in the following two equations: 

fo=/(W) Equation 8-1 

Equation 8-2 
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Where, tq and r f  are the yield stress and viscosity contributed by the mortar or paste coated 

on spherical particles; tqA and rf are the yield stress and viscosity contributed from the direct 

friction of coarse or fine aggregate particles. 

Approach of the concrete (or mortar) rheology modeling study in this research was 

summarized in the following Figure 8-6. Theoretical parameters relating to mortar (or paste) 

coating thickness and mortar (or paste) rheological properties were obtained according to 

concrete microstructure and rheology theory. The thickness of the mortar (or paste) coating 

on aggregate can be calculated from the mix design and aggregate properties and used to 

obtain the relationship between thickness and rheology. Contribution from aggregate friction 

was also study based on mechanics equation, the friction angle of coarse (or fine) aggregate 

were measure and the relationship between friction and concrete (or mortar) rheology was 

obtained accordingly. With the information of the measured mortar and concrete rheology 

properties, models for the prediction of mortar and concrete rheological properties using 

these theoretical parameters were finalized by statistical analysis. The degree of significance 

level of the developed parameters that influence the mortar and concrete rheological behavior 

were evaluate as well. 

Statistic 
Analysis 

Excess 
Thickness 

Finalized New 
Model 

Rheology 
Measurement 

Friction Angle 
Measurement 

Material and 
Design 

Parameters 

Model B: Relationship 
Between Friction and 

Rheology 

Model A: Relationship 
Between Thickness 

and Rheology 

Figure 8-6 Flowchart for concrete and mortar rheology prediction process 
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8.2.2 Rheology by Paste and Mortar Layer Thickness 

According to the proposed modeling as specified in Figure 8-5, the contribution from mortar 

coating (III-a) is studied first. The rheology of a material can be analyzed through 

deformation of the material under a shear stress. For a cubic particle with height of Y and top 

surface area of A, it has a deformation of S under a shear stress when a shear force of F is 

applied (Figure 8-7). The following equations 8-3 to 8-6 can be used to describe the material 

rheological behavior (obtained from Tattersall and Banfill, 1983): 

Deformation, 5 

Velocity, V 

t4^ Force, F / Area, A 

Figure 8-7 Definition of rheological parameters 

The shear stress r (Pa) is defined as the shear force (F} N) divided by the area of the force 

applied on (A, m2): 

T  =  F I A  E q u a t i o n  8 - 3  

The shear strain yis the deformation (ô, m) divided by the height of the particle (Y, m): 

y = S ! Y Equation 8-4 

Shear strain rate Y (s"1) is the differentiation of shear strain over time (or viscosity over 

height), which is normally just simply called the shear rate: 

f = dy / dt = dV / dY Equation 8-5 
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Plastic viscosity 77 (Pa-s) is defined as the rate of shear stress over shear rate: 

îj = r / f Equation 8-6 

With the relation of shear stress and shear rate of material, the rheological behavior of fresh 

concrete can be studied. In order to study the effect of aggregate size and mortar (or paste) 

coating thickness on concrete rheological performance, the following study is performed. 

Assume the mortar (or paste) and aggregate solid particles are uniformly deformed under 

shear force and all relative position of aggregate particle remain the same in concrete (or 

mortar), two aggregate particle at same size and coated with same thickness of mortar (or 

paste) were isolated and considered as study object studied. The two spherical particle coated 

with mortar (or paste) was assumed to be able to represent the whole material as shown in 

case (III-a) in Figure 8-5. When force is applied on concrete (or mortar) composites, if the 

aggregate diameter {ragg) is much bigger comparing to the coating thickness (ts), the objects 

in the boxes with dash lines was assumed to be able to simplified as two pieces of aggregate 

with a layer of mortar (or paste) inside, as shown in Figure 8-8. 

F i 
• • 

:  / •  

: Aggregate 

4 ; » > ! Mortar/Paste 

I Aggregate 

i S 

-4/-è \ 

-raog 

V 

Figure 8-8 Spherical aggregate coated with mortar/paste 

Based on the simplification as described in Figure 8-8, in order to study the rheological 

performance of composite with same material but different mix design, two objects, A and B, 

with different thickness of mortar (or paste) placed between two aggregate particles as shown 

in Figure 8-9 were analyzed: 
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Figure 8-9 Apparent rheological parameters of composite with different thickness 

As it was shown in Figure 8-9, object A has the mortar (or paste) thickness of dj between two 

solid plates, while object B has thickness of <&- When objects were under shear stress (r, and 

z2 respectively), material had deformation of Si and ô\ In a small range of deformation, the 

material can be assumed to behave elastically and the relationship between the shear stress 

and shear strain can be expressed based on Hooke's law as: 

T — Gy Equation 8-7 

where G is the shear modulus of mortar (or paste) (GPa) and y is the shear strain, which 

equals to the deformation divided by the thickness (S/d). 

The shear stresses of objects A and B are: 

r ,=G,^  
d, 

Equation 8-8 

Equation 8-9 

Therefore, the relationship between ti and r? are: 

T / r ,  =  G,(W) 

<%/4)  
Equation 8-10 
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In order to consider effect of coating thickness on concrete (or mortar) rheological behavior, 

the same volume of the selected parts from mix A and mix B (as shown in Figure 8-9 inside 

the rectangular boxes in dash lines) were studied (the apparent distance d' was considered as 

same in these two boxes). Given same deformation (Si = S2), and assumed that forces act on 

top or bottom of the plates do not perform differently in small range of deformation. As it 

was previously summarized in section 2.2.3, since aggregate particles have negligible 

deformation comparing to mortar, all the deformations in the concrete composite are 

assumed to be on mortar part. Based on the assumption that the internal layer mortars (or 

paste) are same, the material properties shear moduli are equal (Gj = Gj). Therefore, for 

given same deformations (Si = S2), Equation 8-10 can be rewritten as: 

r, / t2  — d 2 l  d x  Equation 8-11 

Hence, the yield stress, which is the shear stress on material when movement is initiated, of 

two composite objects have the following relationship as: 

To, /t02 =d2!dx Equation 8-12 

Based on the definition from Equation 8-4 to 8-6, the apparent viscosity of these two objects 

can be calculated: 

r j y x  r l / [ d ( S 1  / d ' ) / d t ]  
rl\ ! Vi ~ — Equation 8-13 

Since the deformation were assumed to be equal (Si = &), following relation between 

apparent viscosity can be found: 

T J l l  T J 2  =  d 2  /  d x  Equation 8-14 

Equation 8-12 and 8-14 indicated that for concrete (or mortar) composite with same mortar 

(or paste), the yield stress and viscosity are both in direct proportion to reciprocal of distance 

between aggregate particles. 
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In order to obtain concrete (or mortar) rheology properties from the rheology properties of 

the different two phases, the matrix (mortar or paste) and composite (concrete or mortar) 

rheological performance with the aggregate particles inside are studied. Two simplified cases 

as described were considered: the first is a solid sphere with a radius of ragg and each particle 

is coated with suspension (mortar or paste) of thickness of ts. In order to compare with object 

in same condition, a second object with only a suspension with the same volume as the first 

case was considered, which means the radius of this uniform material is r = ragg+ts. 

According to the simplification as in Figure 8-8, these two study objects can be simplified as 

in Figure 8-10. If a force is applied on the two hypothetical aggregate particles in the case 

with just suspension inside, the inner layer thickness as rf; or dj is then changed. 

F 
— ^ 

| Aggregate j ^ 

iMortar/Pastej • z 

j Aggregate j 

(a) Concrete (b) Mortar 

Figure 8-10 Effect of coating thickness and aggregate radius on rheological parameters 

In the case with spherical aggregates coated with mortar, the distance between solid particles 

is: 

Dx = 2ts Equation 8-15 

In the suspension-only case, i.e., with only mortar phase, the spheres in first case will be 

replaced with same size of mortar; hence, the distance will then change to: 

: I 
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£ 
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#2 Equation 8-16 
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According to the derived equations 8-12 and 8-14, the yield stress and viscosity of composite 

is proportional to the distance between the solid particles, the relationship between the yield 

stress and viscosity of the composite as shown in Figure 8-10 can be calculated as: 

To° /ro, =D2/Dl = (ragg +ts)/ts Equation 8-17 

V °  /7, = D
2 I  A = (raSg 

+ts)/t
s Equation 8-18 

Results showed that the rheology of the composite can be directly affected by the thickness 

of the coating of paste and mortar. Equation 8-17 can 8-18 can be used to calculated and 

rj° in Equation 8-1 and Equation 8-2 respectively. 

8.2.3 Rheology by Friction 

In order to study the contribution from aggregate friction as described in Figure 8-5 (Ill-b), 

the performance aggregate friction under shear force is studied first. The calculation of the 

rheology caused by friction is shown in Figure 8-11. Assume there is an object composed of 

aggregates particles in a column packed together and there is a negligible amount of confined 

pressure applied on the sample in order to hold the shape of the column. According to basic 

idea of soil mechanics (Das, 1995), when this object is under a normal force and lateral force 

and material be treated as a uniform material, the tensile stress (r, Pa) equals to the normal 

stress (a, Pa) applied to the material times tangent of friction angle (tan (j)) plus the cohesion 

(c, Pa): 

X = cr tan^ + c Equation 8-19 

In cohesionless soil, such as dry aggregate with neglectable amount of fines, the cohesion c = 

0 (Rao et al., 2002); hence, the tensile stress equals to the normal stress (cr) times the tangent 

of the friction angle of the material (tan(j)). 
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Figure 8-11 Shear stress from direct contact of aggregate 

According to the definition of yield stress (shear stress when the movement is initiated) and 

viscosity (rate of shear stress over shear rate) in Equation 8-6, it is can be proposed that the 

effect of friction from the aggregate particles on concrete or mortar rheological property is 

proportional to the friction angle of aggregate. However, it was also found that when fresh 

concrete (or mortar) is under movement, the volume fraction of aggregate in concrete (or 

mortar) also affects the rheological performance because it is related to the probability that 

aggregate particles are in contact with each other (Kurokawa and Tanigawa, 1996). 

When paste or mortar was added into the aggregate, the aggregate particles were pushed 

apart by the mortar (or paste) and were not in contact with each other. Consequently, after the 

flow of concrete or mortar was initiated, the higher the volume concentration the aggregate, 

the higher the possibility that the aggregate will be in contact with each other and hence the 

friction will be higher. The yield stress from aggregate friction V* can be related to the 

friction angle of aggregate as shown in Equation 8-20, while the viscosity from aggregate 

friction can hence be to be related to both friction angle and volume fraction of aggregate by 

Equation 8-21 : 

r0 = f (tan <f)a ) Equation 8-20 

V = /(tan <j)a, Va %) Equation 8-21 

Where tan 0a is the friction angle of aggregate, Va% is the volume fraction of aggregate. 
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Previous research on lateral pressure from SCC found out that the lateral pressure from SCC 

decrease with the increase of aggregate volume and/or the increase of the maximum size of 

aggregate (Assaad and Khayat, 2005). This fact was considered to be contributed from higher 

degree of aggregate friction inside concrete, which is consistent with the derivation in this 

section. It is necessary to point out that although aggregate friction will affect concrete and 

mortar rheology performance, the contribution may not be as significant as contribution from 

paste and mortar rheology and coating thickness. This is due to the fact that the shear stress is 

also decided by the normal stress applied on aggregate (cr as in Equation 8-19), which is 

relative low because of the small difference between paste, mortar and aggregate specific 

gravity values. 

The rheology from aggregate friction in concrete and mortar is difficult to be calculated 

directly because of the complicated flow pattern of aggregate and suspension inside 

composite like fresh concrete. The relationship will be examined using statistical analysis 

that compares the calculated and measured rheological parameters, which will be specified 

later in this chapter. 

8.3 Mortar Rheology Model 

8.3.1 Excess Paste Thickness 

As it was stated in Figure 8-5, in order to calculate the contribution of aggregate coating, it is 

important to calculating the coating thickness on coarse aggregate. Concrete and mortar are 

composite of solid phase and liquid phase (mortar or paste), in which only the liquid phase 

provides flowability. However, it was found that only part of the paste is able to provide flow, 

the rest is used to fill up the space between solid particles (Kennedy, 1940). Even for well-

graded aggregates, there are still some spaces between aggregate particles, which mean a 

certain amount of paste is required to fill up these spaces. The additional amount of paste 

coating the aggregate particles can be therefore used to minimize the friction between them 

and hence attain high workability on mortar and concrete. According to Oh et al. (1999), the 

total volume of cement paste can be divided into two portions. One part is the paste in the 
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voids among aggregates, while the other part is the excess paste which coats the aggregate 

and separates them. It is the amount of excess paste, instead of the whole paste, that decides 

the rheology of mortar. 

paste aggregate up voids 

Figure 8-12 Definition of excess paste thickness (after Oh et al., 1999) 

According to Oh et al. (1999), an approach as described in Figure 8-13 was used to calculate 

the excess paste volume. The total volume of paste is divided into two portions, in which one 

part is the paste in between voids among fine aggregates and the rest part is the excess paste, 

which covers the fine aggregate particles and separates them from contact with each other. 

Figure 8-13 Calculation of excess paste volume (after Oh et al., 1999) 

The volume of the excess paste can therefore be calculated as: 

V e p  = V P -  V c p  Equation 8-22 
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In this equation Vep is the whole volume of the excess paste (mm3), Vcp is the volume of paste 

that fill up the voids (mm3), and Vp is total volume of paste (mm3). 

The volume of paste can be calculated according to the mix design of mortar based on: 

VP = (Ww +WC)/ Yp Equation 8-23 

In this equation Ww is the weight of water (g), Wc is the weight of cement (g) and yp is the 

density of the cement paste (g/mm3) (normally it can be assumed to be 2.6xl0"3g/mm3 

(Mindess et al., 2003)). Assuming the weight of the cement is defined (use a value of one 

gram), the weight of the water and fine aggregate (WFA) can then be calculated according to 

the mix design by one times the w/c or s/c. According to the definition, the uncompacted 

void Vn.FA can be expressed as: 

V FA = Equation 8-24 

In this equation, WFA is the weight of fine aggregate (g), Vv-FA is the volume of void between 

fine aggregate particles (mm3), and yFA is the density of fine aggregate (g/mm3), which can be 

calculated according to the specific gravity of fine aggregate at SSD condition from section 

4.1.1 (yFA = G^-faX 10"3g/mm3). Equation 8-24 can be rewritten as following: 

r = Equation 8-25 

When the space between fine aggregate is filled up with cement paste, the Vv.FA will be the 

same as Vcp in Equation 8-22. 

Different from the standard method of determine the surface area of the aggregate by 

multiplying the percentages of material passing a given set of sieves by a set of surface area 

factors and adding the products (Asphalt Institute, 1989), an approach similar to Heitzman's 

index model of calculating asphalt film thickness was applied (Heitzman, 2005). In present 

research, the surface area of the coarse aggregates was calculated by the number of aggregate 
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at specific size times the surface area of the individual aggregate, a procedure based on 

volume of aggregate instead of weight of aggregate was employed. Assuming the aggregate 

particles are all in spherical shape, according to the density of aggregate, /FA, the number of 

aggregates at different size can be calculated as: 

W I v 
nfa = fa  Equation 8-26 

4 71 

In this equation NFA is the number of fine aggregate at individual size, rFA is the average 

radius of aggregate on individual sieve (mm), which can be calculated according to the 

average of the sieve size where aggregate particles in between: 

• F A  -= _mra EÏL Equation 8-27 

In this equation, Dmin is the maximum sieve size (mm) the aggregate can not pass through 

and Dmax is the maximum sieve size (mm) aggregate can pass through. For example, the 

average size of aggregate retained on a #100 sieve can be calculated according to the size of 

#100 sieve {Dmin = 0.15mm) and #50 sieve (Dmax = 0.3mm), which will be 0.1125mm. 

For graded fine aggregate, the average radius of the particles can be calculated according to 

the number of particles at different size as: 

i-FAri-FA 1% rG-FA = —"Yjj. Equation 8-28 
' i-FA 

By the assumption that all the aggregate particles are spherical, the surface area of the 

aggregates can be calculated by the number of particles within the aggregate times the area of 

the individual aggregate surface included as: 

Equation 8-29 
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In this equation SFA is the surface area of aggregate (mm2). For graded fine aggregate with 

several different sizes, the surface area can be calculated by summing up the surface area at 

different aggregate sizes: 

sg-fa=Yj ni—fa x ^i-fa ̂ Equation 8-30 

In this equation, TV,-fa is the number of aggregate in certain size and rt_FA is the average 

radius of aggregate in certain size (mm). 

According to the assumption that each particle will be covered with same thickness of paste, 

the excess paste thickness can be calculated by dividing the volume of excess paste by the 

surface area as (adopted from Oh et al., 1999): 

tp = Equation 8-31 
$FA 

Figure 8-14 shows the calculated results of excess paste thickness of mortar in the same mix 

design but different size and type of aggregate. The calculated results are in agreement with 

the results from Ferraris and Gaidis (1992), which stated that the average gap between 

aggregates was computed to be around 0.2mm. It was found from the results that with the 

increase of the dimension of the aggregate, the excess paste thickness will be significantly 

increased because of the decreasing surface area, which requires less cement paste to cover 

the surface of aggregate. Figure 8-14 also shown that riversand and limestone resulted in 

different excess paste thickness, where the thickness of paste by using limestone and is lower 

because of the higher angularity and hence there is a larger uncompacted void percentage 

within the aggregate, meaning more cement paste is necessary to fill up the space in between 

aggregate particles. Results in Figure 8-14 (a) and (b) did not show obvious difference of the 

calculated excess paste thickness between graded and single-sized riversand, the calculated 

excess paste thickness by using graded riversand lay between the thickness resulted from #50 

to #16 riversand. 
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Figure 8-14 Calculated excess paste thickness of with different sand 

Since mortar may have different aggregate sizes and gradation, the calculated excess paste 

thickness values are different when the aggregate size is different; thus, a nominal thickness 

was used to considering the effect from aggregate size. The nominal excess paste thickness is 

defined as the calculated excess paste thickness divided by the average radius of aggregate as 

(adopted from Oh et al., 1999): 

t' = Equation 8-32 
VFA 

The calculated nominal excess paste thickness using uniform size aggregate and graded 

aggregate is shown in Figure 8-15. The results indicated that aggregate with higher angularity 
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(limestone) has a much lower calculated nominal excess paste thickness than aggregate with 

lower angularity (riversand). Results in Figure 8-15 (b) clearly illustrated that with same kind 

of fine aggregate (riversand), mortar with graded fine aggregate has significantly higher 

nominal excess paste thickness (around 0.4 to 0.8) compared to those with uniform size fine 

aggregate (around 0.2 to 0.3). This is due to the smaller size of aggregate particles filling up 

the space between uncompacted void of relative bigger size of particles. This phenomenon 

can explain why mortars with better-graded aggregate have better flow. 
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Figure 8-15 Calculated nominal excess paste thickness with different gradation of sand 

According to the equations of effect of spacing on composite rheology (Equations 8-17 and 

8-18) and the definition of the nominal excess paste thickness (Equation 8-32), the yield 
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stress and viscosity of the mortar contributed from spacing can be directly calculated by the 

nominal excess paste thickness according to the following two equations: 

Tom° lrop = 1 + 1/t p '  Equation 8-33 

Tjm° I  r jp  =1 + 1 / tp '  Equation 8-34 

Where tp ' is the calculated normal excess paste thickness, tqp and r]p are the yield stress and 

viscosity of paste respectively, which was obtained from Equation 5-1 and 5-2. 

It is necessary to point out that the since calculation of surface area of aggregate is 

underestimated because of the assumption of the spherical shape of particles, further study is 

still necessary to improve the calculation by introduction of some shape factors using tools 

such as image analysis (Rao et al., 2000). However, the effect of aggregate shape was not as 

significant as expected because the size of the aggregate particle used in calculation was 

actually overestimated due to the fact of the spherical assumption. In the calculation, each 

particle was assumed to fit on every side of a single sieve mesh opening, which resulted in a 

larger aggregate and counteract to the effects on the calculated surface area. This statement is 

consistent with Heitzman (2005)'s research that the effect of aggregate shape is not very 

sensitive in calculating asphalt film coating thickness. 

8.3.2 Mortar Rheology Analysis 

The derived terms related to yield stress and viscosity contributed by the mortar coated on 

spherical particles (to° and rf from equation 8-33 and 8-34), together the yield stress and 

viscosity contributed from the direct friction of aggregate particles ( r/' and if from equation 

8-20 and 8-21) are used in finalize the concrete rheology model. In order to study the 

statistical significance of different parameters, linear regressions using the logarithm values 

of input and output parameters were used. A stepwise regression method with significance 

level of 0.05 was applied in statistical analysis (details regarding the statistical analysis 

method and terminology can be found in Appendix VIII). The parameters of the nominal 
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excess paste thickness and the calculated paste rheological parameters from identical w/c 

according to Equation 5-1 and 5-2 were used in these models. 
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Figure 8-16 Prediction for mortar rheological parameter 

Results shown in Figure 8-16 indicate that the predicted and measured viscosity and yield 

stress have good agreement, with R2 value of 0.92 and 0.85 respectively. It is necessary to 

point out that when the s/c increases to 3, the amount of paste in mortar is not enough to fill 

up the space between aggregate. This results in a negative calculated excess paste thickness, 

in which case the proposed model is no longer valid. Also, when the volume fraction of fine 

aggregate is high, several of the mortar mixes did not perform like liquid; additionally, strong 

segregation or rough mixes which can not flow well were observed. The rheology test of 

these mixes also showed very inconsistent results, which indicated they were not suitable for 

rheometer test. Due to these problems, the author did not these test results of mortar with 

negative calculated excess paste thickness in the analysis within this section. Based on the 

developed measurement results and parameters, the regression model equations for 

predicting mortar viscosity and yield stress are: 

=2.04/7/^(1 + 1/^') 

T^=5.29T, /^ ( l  +  l / ^ ' ) °" '  

0.0823 
Equation 8-35 

Equation 8-36 
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Results indicated that with the increase of paste viscosity and yield stress, viscosity and yield 

stress of mortar increase respectively, which was expected because rheological performance 

of suspension in mortar is different. On the other hand, the yield stress and viscosity of 

mortar also decrease when nominal excess paste thickness increases, due to the increasing 

coating thickness of aggregate which the increases the distance between aggregate particles 

and thus provides the mortar with better flowability. 

Table 8-1 ANOVA for prediction of mortar yield stress 

Source DF Sum of Squares Mean Square F-Ratio p-value 

ln[r0p(l + l /*,')] 1 10.12 10.12 416.9 <0001 

M(l + l/f/) 1 7.02 7.02 289.2 <.0001 

Error 60 1.46 0.243 

C. Total 62 11.61 <0001 

Table 8-2 ANOVA for prediction of mortar viscosity 

Source DF Sum of Squares Mean Square F-Ratio p-value 

Info, (1 + 1/*,')] 1 11.305 11.305 962.1 <0.0001 

b(l + l/f/) 1 8.367 8.367 712.1 <0.0001 

Error 60 0.705 0.01175 

C. Total 62 12.26 <0001 

According to the analysis results for mortar yield stress modeling in Table 8-1, the F-ratio of 

the term ln[Top(l+l/tp)] and ln(l+l/tp') is 416.9 and 289.2 respectively, with corresponding 

p-values smaller than 0.0001. According to the analysis of variance (ANOVA) table for the 

linear regression analysis results for mortar viscosity modeling in Table 8-2, the F-ratio of 

the term ln[rjp(l+l/tp')] and term ln(l+l/tp') is 962.1 and 712.1 respectively, with 

corresponding p-values smaller than 0.001. The residual versus prediction curve did not show 

any clear pattern, which indicates that the regression is appropriate. The statistical analysis 

indicated that the effect of both tp ' and f]p (or are statistically significant, with the 

significance level 0.05, because the p-value in the models are both less than 0.05. Factors 
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relating to friction {Tan @FA) was not found to be statistical significant (p-value much larger 

than 0.05), which is consistent with previous ANN analysis in section 8.1.1. This may be 

caused by the fact that the calculated excess paste thickness is interrelated to the aggregate 

friction angle, which might conceal the statistical significance of the effect from aggregate 

friction. 

8.4 Concrete Rheology Modeling 

8.4.1 Excess Mortar Thickness 

Based on the previous mentioned two-phase theory by Topcu and Kocataskin (1995), 

concrete can be considered as a composite with coarse aggregate and mortar, if the mortar is 

considered as a uniform suspension according to two-phase theory. The idea of calculation of 

the excess paste thickness (Oh et al., 1999) was extended to calculate the excess mortar 

thickness. As shown in Figure 8-17, it is necessary to have sufficient coating between coarse 

aggregates to minimize the friction between them and hence to attain high workability on 

concrete. 

Excess Coarse Mortar fill 
mortar aggregate up voids 

Figure 8-17 Definition of excess mortar thickness 

Using a similar approach as used when calculating the excess paste thickness, the total 

volume of mortar can be divided into two portions, in which one part is the mortar in 

between voids among aggregates and the other part is the excess mortar, which covers the 
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coarse aggregate particles and separates them from contact with each other. The volume of 

the excess mortar can be calculated according to: 

V  = V  - V  
em m cm Equation 8-37 

In this equation VEM is the volume of the excess mortar (mm3), VCM is volume of mortar in 

between voids (mm3), and VM is the total volume of mortar (mm3). 

•iJM' 
mm « B M M M «M 

Figure 8-18 Calculation of excess mortar volume 

According to Figure 8-18, the volume of mortar can be calculated as: 

Equation 8-38 

Vcm 

Vca 

In this equation WW is the weight of water (g), WC is the weight of cement (g), Wfa is the 

weight of fine aggregate (g), and ym is the density of mortar (g/mm3) (which can normally 

be assumed to be 2.5x10"3g/mm3 (Mindess et al., 2003)). Assuming the weight of cement is 

one gram, the weight of the water, sand Wfa and coarse aggregate WCA can be calculated 

according to the mix design by times the w/c and coarse aggregate-to-cement ratio (CA/c). 

According to the definition, the uncompacted void can be expressed as: 

V. v-CA 
n-CA 

^v-CA + WCA ! 7CA 

Equation 8-39 
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In this equation WCA is the weight of coarse aggregate (g), Vv.CA is the volume of void 

between coarse aggregate (mm3) and /ca is density of coarse aggregate (g/mm3), which can 

be calculated according to the specific gravity at SSD condition from section 4.2.1 (jca = G^. 

CAxlO"3g/mm3). Equation 8-39 can be expressed with the following: 

V CA = V"~caWca Iïca Equation 8-40 

In this equation the spaces between the coarse aggregate particles are filled up with mortar, 

so Vv-CA will be the same as VCM in equation 8-37. Assuming the aggregate material is 

spherical and according to the density of coarse aggregate /CA, the number of coarse 

aggregate particles of different sizes can be calculated as: 

Nca = Equation 8-41 
L 4 n 

3 Tca 

In this equation NCA is the number of coarse aggregate particles at an individual size and rCA 

is the average radius of coarse aggregate on individual sieves (mm), which can be calculated 

according to the average of the sieve size where aggregate lies in between: 

Anin + -Pmax Equation 8-42 

In this equation Dmin is the maximum sieve size that the aggregate can not pass through and 

Dmax is the minimum sieve size through which the aggregate can pass. For example, the 

average size on 3/8" sieve can be calculated according to the size of 3/8" sieve (Dmin = 9.5mm) 

and 1/2" sieve (Dmax = 12.5mm), which will be 5.5mm. 

For graded coarse aggregate, the average radius of particles can be calculated by the 

weighted average of particle size on number of particles: 

i-CAri-CA 2 X - . . . .  —= Equation 8-43 

2Xc, 
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The surface area of the coarse aggregates can be calculated by the number of aggregate times 

the area of the individual aggregate surface using: 

SCA = NCA x 4nrCA 2 Equation 8-44 

In this equation SCA is the surface area of coarse aggregate (mm2). For graded coarse 

aggregate, the surface area can be calculated by summing up surface area at different 

aggregate size: 

sg-ca = Yj ni-ca x 47zr, -c/ Equation 8-45 

In this equation M-oi is the number of coarse aggregate in certain size and rt CA is the 

average radius of coarse aggregate in certain size. 

According to the assumption that each particle will be covered with same thickness of mortar, 

the excess mortar thickness can then be calculated by dividing the volume of excess mortar 

by the surface area: 

V 
tm = —-1— Equation 8-46 

Figure 8-19 illustrates the calculated results of excess mortar thickness of concrete with the 

same mix design but different sizes of coarse aggregate. The calculated excess mortar 

thickness decrease with the increase of volume content as expected because of the reducing 

of the available amount of mortar. It can also be found that with the increase of the 

dimension of coarse aggregate, the excess mortar thickness will be significantly increased 

because of the decreasing of surface area, which requires less mortar to coat the surface of 

coarse aggregate. No significant different of the calculated excess mortar thickness by using 

single size or graded aggregate was found. The graded aggregate resulted in a higher excess 

mortar thickness comparing to smaller size aggregate (#4), but lower excess mortar thickness 

comparing to larger size aggregate (3/4"). 
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Figure 8-19 Calculated excess mortar thickness with different coarse aggregate 

The nominal excess mortar thickness can be calculated by dividing the excess mortar 

thickness with the average radius of coarse aggregate rcA : 

The results of the calculated nominal excess mortar thickness were shown in Figure 8-20. 

Results indicated that concretes with graded aggregate have higher nominal excess mortar 

thickness, which is because of the lower uncompacted void content of the aggregate resulting 

in greater amounts of excess mortar. Also, higher coarse aggregate content results in lower 

nominal excess mortar thickness, which is because more of the mortar volume will be 

required corresponding to a higher volume fraction of aggregate. Results also showed that the 

size of chosen single size aggregate in do not result in significant different normal excess 

mortar thickness value as the excess mortar thickness shown in Figure 8-19. However, the 

decrease of the excess mortar thickness with the decrease of the aggregate size as illustrated 

in Figure 8-19 indicated that using smaller size of aggregate will result in a lower coating 

thickness. This means aggregate have more chance to contact with each other and have more 

contribution on the friction force inside concrete, which explained why using smaller size of 

aggregate generally sometimes result in concrete with higher yield stress and viscosity value. 

t 
r Equation 8-47 
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Figure 8-20 Calculated nominal excess mortar thickness with different gradation of coarse aggregate 

According to Equations 8-17 and 8-18, the rheology of the concrete contributed from spacing 

can be directly calculated by the nominal excess mortar thickness as: 

= T o „ ( l  +  l / V )  

%/=%»(! +1/V) 

Equation 8-48 

Equation 8-49 

Where tm ' is the calculated normal excess mortar thickness, tom and r/m are the yield stress 

and viscosity of mortar respectively, which was obtained from Table A-4. 

8.4.2 Concrete Rheology Analysis 

Similar to the study in mortar rheology, statistical models using the developed theoretical 

parameters related to mortar coating and coarse aggregate friction were developed for the 

prediction of concrete rheological properties as well as for evaluation of the degree that these 

factors influenced the concrete rheological behavior. 

The derived term related to yield stress and viscosity contributed by the mortar coated on 

spherical particles (t0° and rf from equation 8-48 and 8-49), together the yield stress and 

viscosity contributed from the direct friction of aggregate particles {tqA and rjA from equation 

8-20 and 8-21) are used in finalize the concrete rheology model. In order to study the 

rheology of concrete, linear regression using the logarithm values of input and output 
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parameters was used. A linear regression analysis with possible parameters that may affect 

the rheology was performed with stepwise regression analysis with significance of 0.05. 

A model with the term of yield stress from coating Tom(l+l/tm') and friction tan((j>cA) as 

shown in Equation 8-50 was found to have a strong correlation with the yield term 

(interception G) from concrete rheology measurement. 

G = 0.00138[r„„ (1 +1 /<„')]'" W. V" EquaU<m 8.50 

Equation 8-50 shows that with the increasing of mortar yield stress r0m, the yield term 

(interception G) of concrete increases. When excess mortar thickness, the interception also 

increases because of the increasing of spacing. It was also found from the ANOVA table 

(Table 8-3) that the F-ratio of this term is 149.3, corresponding to a p-value less than 0.0001, 

which indicates that the factor of T0m(l+l/tm') is significant in a 0.05 significance level. The 

F-ratio of the parameter tan((f>cA) is 3.80, corresponding to a p-value slightly higher than 0.05, 

indicating that the effect from aggregate friction is still significant. It was observed that the 

estimated parameter for tan(fcA) have negative effect, indicating that (providing all of the 

other parameters are fixed) with the increase of aggregate friction angle, the concrete yield 

value decreases. This was not explainable by the previously described theory of rheology 

contributed from friction. This phenomena might caused by the interaction of the calculated 

excess mortar thickness and friction. Since the uncompacted void content used in Equation 8-

40 is directly related to the friction angle, a higher friction angle will result in a higher void 

content of the aggregate, and the effects of void content conceals the effect from aggregate 

friction and results in a the negative effect parameter. Analysis on the sensitive of effect from 

different factors shown from the ANN analysis (Figure 8-4) demonstrated that when the 

friction angle of the aggregate increases, it had a positive effect on the yield term of rheology. 

The interaction between these two terms used in statistical analysis resulted in an unexpected 

expression of the terms. However, the involvement of the friction angle term did improve the 

model, although the physical meaning can not be directly explained. The problem might be 

solved by using different kinds of aggregate from other sources which have significantly 

different friction angles. 
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Table 8-3 ANOVA for prediction of concrete yield parameter 

Source DF Sum of Squares Mean Square F-Ratio p-value 

ln[r0m(l + l/^m')] 1 6.897 6.897 149.3 <0001 

ln[tan(OJ] 1 0.176 0.176 180 0.0653 

Error 20 0.924 0.0462 

C. Total 22 7.863 <0001 

The analysis of the viscosity term (slope H) of the concrete rheology test as shown in 

Equation 8-51 indicates that the viscosity of concrete not only related to the nominal mortar 

thickness and friction angle of the coarse aggregate but that it is also related to the volume 

fraction of coarse aggregate, in agreement with the research from Kurokawa et al. (1996) as 

shown in Equation 2-18. 

H = 9.125b,„ (1 + !/<„, ')]"*" [(Fc„ %)'"« (Tant„ ] Equation 8-51 

ln[tjm(l+l/tm'J, ln[Vca%xtan(0ca)] and ln[tan(Qca)] have F-ratio s of 23.89, 9.38 and 11.98 

respectively, corresponding to p-value all less than 0.05, which indicates that all three 

parameters have statistical significant effects on the concrete viscosity term. Results shown 

in Figure 8-21 of a prediction with R2 value of 0.88 and a p-value of model less than 0.0001 

indicates a very good prediction. The residual versus prediction curve also did not show any 

clear pattern. Results indicate that both the terms from spacing and from aggregate friction 

have significant effects on the viscosity of concrete. 

Table 8-4 ANOVA of prediction of concrete viscosity parameter 

Source DF Sum of Squares Mean Square F-Ratio p-value 

ln[77m(l + l/^')] 1 0.129 0.129 23.89 0.0001 

ln[)/,%xtan((L)] 1 0.0505 0.0505 9.38 0.0064 

ln[tan(^Y, )] 1 0.0645 0.0645 11.98 0.0026 

Error 19 0.102 0.00539 

C. Total 22 1.115 <.0001 
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Results shown in Figure 8-21 indicate that the predicted and measured interception and slope 

of concrete rheology test are in strong agreement, with an R2 value of 0.86 and 0.88 

respectively. The P-value for the model are less than 0.001, the residual versus prediction 

curve also did not show clear pattern, which indicates that the regression is appropriate. 
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Figure 8-21 Prediction for concrete rheological parameters 

8.5 Summary 

According to the initial study using ANN methods, the effects of aggregate on mortar and 

concrete rheology, including type, size, gradation, and content, were systematically 

considered. Results showed that aggregate proportion, void content, friction, together with 

the rheology of paste and mortar all showed important effects on mortar and concrete 

rheological parameters. Theoretical parameters relating to aggregate spacing and friction 

were obtained and studied based on microstructure of concrete and mechanics accordingly. 

Statistical tool was use to finalize the rheology model with these developed theoretical 

parameters as well as for evaluation of the degree that these factors influenced the mortar and 

concrete rheological behavior. 

According to the newly developed models, the parameters including rheology of suspension, 

nominal paste or mortar thickness and tangent of aggregate friction can be successfully used 
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to predict the mortar and concrete rheology. Results and modeling from this chapter proved 

that mortar and concrete rheology contributed from both spacing and friction. The newly 

developed models were found to be more rational and practical compared to the previous 

models. The developed models can be used to analyze the effects of aggregate on mortar and 

concrete rheology. Also, the models have great potential to be used to design mortar and 

concrete with desirable rheology parameters. 
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CHAPTER 9. SUMMARY AND CONCLUSIONS 

9.1 Summary 

In this study, the rheological behavior of paste, mortar, and concrete have been investigated 

using rotational rheometers. Type I Portland cement was used as the cement, limestone was 

used as the coarse aggregate, riversand and limestone were used as the fine aggregate. A total 

of 10 cement paste mixes, 136 mortar mixes and 23 concrete mixes were evaluated. Different 

variables relating to the effects of aggregate - including proportion, type, size, and gradation 

on mortar and concrete rheology - were quantitatively studied. The relationships of the 

rheology tests with standard slump tests and flow table tests were discussed. 

Based on the test data, models were developed for predicting the mortar and concrete 

rheological properties as well as for evaluating the factors that influence mortar and concrete 

rheological behavior. Based on the two-phase theory and excess paste theory, the excess 

paste thickness of fine aggregate, excess mortar thickness of coarse aggregate and aggregate 

friction were calculated and chosen as the major parameters in study. The rheology models 

were then obtained using these parameters according to statistical regression analysis. Unlike 

the previous models, the effects of aggregate on mortar and concrete rheology were 

systematically considered in the present models. The newly developed models were found to 

be more rational and practical comparing to the previous models. 

9.2 Findings 

The major findings of this study are included as the following: 

1. Aggregate Characterization 

• Aggregate gradation, shape, and surface texture can be simply characterized by the 

measurement of uncompacted voids between the aggregate particles. Generally, 

aggregate with higher uncompacted void content provides mortar and concrete with a 

lower flow. 
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• Friction between aggregate particles can be characterized by a newly developed 

friction angle test. The increase of aggregate friction angle generally increases the 

yield stress and viscosity of cementitious materials. 

2. Effects of Aggregate on Mortar and Concrete Rheology 

• Aggregate with lower uncompacted void content generally reduces mortar or concrete 

yield stress and viscosity. Graded aggregate can considerably reduce yield stress and 

viscosity of mortar and concrete because of the reduced void content. 

• Irregular shape and rough-surface aggregates have higher uncompacted void contents 

and higher friction angles than round and smooth-surface aggregates. Fine aggregate 

with a high friction angle (limestone) results in higher yield stress and viscosity 

mortar compared to low friction angle fine aggregate (riversand). 

• For a given aggregate content, finer aggregate normally provides mortar and concrete 

with higher yield stress and viscosity. 

• Increasing the amount of aggregate content results in larger values of yield stress and 

viscosity of mortar and concrete because of the decrease in the thickness of the paste 

or mortar coating on the aggregate particles. 

3. Modeling Study 

• Excess paste or mortar thickness can be estimated according to the aggregate 

uncompacted void content and mix design. Mortar and concrete with larger amounts 

of excess paste or greater mortar thickness has a lower yield stress and viscosity. 

• Parameters used in the model can be obtained through mix design and aggregate 

properties with simple test such as uncompacted void and friction angle. The models 

were found to be more rational and practical comparing to the previous models. 

• The rheology of the matrix (paste or mortar), relative thickness of paste or mortar, 

and aggregate friction were considered as the major parameters in the newly 

developed models. 
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• The developed models can be used to analyze the effects of aggregate on mortar and 

concrete rheology. They can also be used to design mortar and concrete with 

desirable rheological parameters. 

4. Test Methods 

• Standard tests, including the mortar flow table test and the concrete slump test, were 

compared with the rheometer test results. The combination of the slump and flow 

table test results may provide engineers with sufficient information on the rheological 

behavior of cementitious materials. 

9.3 Research Limitations and Recommendations 

In the present study, some assumptions were made in the concrete rheology model 

development. These assumptions shall be re-evaluated and/or modified to improve the 

models in future study. 

In the calculations of the surface area and excess paste or mortar thickness, aggregate 

particles were assumed to be spheres, and effect of aggregate shape was not directly 

considered in the models. Also, the portion of concrete rheology decided by spacing and 

from aggregate friction was not able to study independently because of the limitation of test 

equipment. A comparison of aggregate versus same aggregate with voids filled by mortar (i.e. 

concrete with the corresponding mix design) performed by direct shear or triaxial test may be 

used to study the contribution from aggregate friction in concrete rheological performance, 

which should be helpful to further improve the model. 

The mixtures of mortar and concrete were assumed to perform uniformly under deformation 

in the calculation of rheology parameters, which might not be practical since material at 

different locations might deform differently. A computer simulation may be applied to 

imitate the flow pattern of materials inside the mixture. 
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The yield stress and viscosity for concrete used in the present research are not available due 

to the difficulty of the simulation of exact flow behavior in the concrete rheometer test (the 

viscosity parameter (H) and yield parameter (G) were calculated instead). It is necessary to 

develop reference materials in order to get absolute rheological parameters and improve the 

accuracy of concrete rheometers. The standard reference material using plastic spheres and 

oil-based system to simulate concrete mixtures in order to compare different concrete 

rheometers is currently under discussion by ACI committee 236A. 

In the present research, the effects of chemical admixtures and SCMs on the rheological 

performance of cementitious materials were not considered. It is necessary to consider the 

effect on the rheological properties of cement paste on a wider range in the rheology model, 

since different admixtures are more often used in current concrete. 

Due to the limitation of time and source of materials, the accuracy, reliability, and 

reproducibility of model was restricted because of the relative small amount of data. A larger 

series of measurements and materials with a broader range of properties have to be tested in 

order to improve the validity of model. Additional data including the field data, assuming 

that the aggregate property parameters and mix designs are available, can improve the 

accuracy and wider applicable range of the model by setting up a bigger data base. 
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APPENDIX. I  FINE AGGREGATE SPECIFIC GRAVITY AND 

ABSORPTION 

ASTM CI28 specified the test method to determine the bulk density and the absorption of 

aggregate (after 24 hours in water) on the basis of the weight of SSD fine aggregate and 

apparent specific gravity. Since it is very difficult to have every batch of mortar mixed with 

SSD sand, OD sand was used in mortar mixing. Considering aggregate can absorbed a 

significant amount of water in the first several minutes after contact with it (Winslow, 1987), 

a modified method from ASTM CI28 was therefore applied to estimate the absorption of fine 

aggregate within the first ten minutes, which is approximately the time from aggregate 

contact with water to completing the mortar rheology measurement. Notably, within the time 

period of five to ten minutes, no detectable additional amount of water absorption within the 

fine aggregate used in present study was found through measurement. 

Figure A-l Fine aggregate specificity gravity and absorption 

In this modified method, the OD fine aggregate was place into the pycnometer (as shown in 

Figure A-l), in stead of the SSD aggregate. The estimation of absorption of fine aggregate 

within the first ten minutes is described below: 

1. Measured the weight (around 800 grams) of OD sand and recorded the weight as Wts (g) 
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2. Calculated the volume of sand Vs (cm3) according to specific gravity Gsb(oo) calculated 

through ASTM CI28 based on: 

Vs = Wts / Gsb(0D) x cm3 / g Equation A-l 

3. Placed the weighted sand into the pycnometer, filled it with water, and removed all the 

air bubbles by rolling, inverting and agitating the pycnometer 

4. Measured the weight the pycnometer when it was full of water and sand and recorded the 

weight as Wts+w (g) 

5. Calculated the weight of water including the absorbed amount of water by weight 

according to: 

Wtwl = Wtw+S - Wts Equation A-2 

6. Calculated the weight of water (excluding the absorbed amount of water) by volume 

times the density of water according to: 

Wtw2 = (Vpy - Vs ) X l(g / cm3 ) Equation A-3 

7. Calculated the absorption based on the difference of the calculated Wtwj (g) and Wtw2 (g) 

as: 

Abs% = (Wtwl —Wtw2)lWts x 100 Equation A-4 

This calculated aggregate absorption is different from the aggregate absorption from ASTM 

CI28, which reflected the aggregate absorption capacity. As shown in Figure 4-1, the 

calculated absorption from equation A-4 indicated the absorption of aggregate in the first ten 

minutes (AbsAct%), which is a little bit lower than the absorption earned according to ASTM 

C128 

The w/c were calculated by considering the amount of water absorbed into the aggregate. 

The modified w/c can be calculated according to: 

w / c  =  ( w/c)0D -s/cxAbsAct % Equation A - 5  
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In this equation w/c is the actual water-to-cement ratio of mortar (in the period of mortar 

rheological test), (W/C)OD is the w/c calculated based on OD fine aggregate, s/c is the sand-to-

cement ratio of mortar, and AbsAct% is the absorption of fine aggregate within testing period 

(ten minutes). 

The rates of water absorption were found to vary with size and type of aggregates. Results 

also showed that the actual absorption in the rheological testing period (AbsAct% as shown in 

Figure 4-1) was always a little lower than total absorption ability of aggregate (AbsTot% as 

shown in Figure 4-1). Most of the aggregates used in present research take in around 60% to 

80% of their 24 hours uptake of water within the first several minutes. 
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APPENDIX I I .  CEMENT PASTE RHEOMETER TEST 

Previous research found that by choosing a different rheology testing procedure, the shear 

stress versus shear rate curve might behave differently (Geiker et. al., 2002a). For example, 

the flow curves from the measurement might turn from linear to nonlinear, such as shown in 

Figure A-2. When the w/c of the cement paste are relative high (0.50 or 0.60), the shear rate 

and shear stress curve will not show linear behavior as expected from Bingham behavior. 

Specifically, when shear rates are higher than 70s"1, the slope will increase significantly, 

which indicates that more force is required to increase the flow rate in cement paste. This 

phenomenon may be caused by the flow current interference inside the measurement 

container because of the much higher flowability and liquid-like behavior of the cement paste. 
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Figure A-2 Rheology test result from different test procedures 

Results also illustrated that although the flow behavior is different at higher shear rate range, 

the downward part of the flow curves still fit very well with the results of flow curves when 

the shear rate is relatively low. In order to get consistent results, a maximum shear rate of 

50s"1 instead of 100s"1 was therefore used for rheology test of cement paste. 

Max shear rate 100s y/ 

Max shear rate 50s 

w/c=0.60 
Hobàrt Mixer 
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APPENDIX I I I .  CEMENT PASTE MINI-SLUMP CONE TEST 

The mini-slump cone test was original developed by Kantro (1980) for evaluating the 

influence of WR on workability of cement paste. The test method had been successfully used 

to estimate the effect of different admixtures (Svermova et. al., 2003) and to evaluate the loss 

of workability with time (Kantro, 1980). The mini-slump cone test was found to be very 

efficient on evaluating the effect of chemical and mineral admixtures because the study 

object is neat cement pastes, which make the test more sensitive than slump test of concretes. 

S 
(a) Paste with low flowability (b) Paste with high flowability 

Figure A-3 Mini-slump cone test 

The mini-slump cone was performed similarly to the slump test. The resulting paste pat areas 

rather than heights are measured, and the results are expressed as the percentage of flow. As 

shown in Figure A-3, different paste may show different shapes of paste cone and different 

flow percentages. The procedure described below was used to estimate the flow of different 

cement in this research: 

1. Put mini-slump cone on leveled and clean table surface, 

2. Pour the paste into the mini-slump corn carefully, avoiding any run-offs on the slides, 

3. Strike off the excess paste remaining on the top of the mini-slump cone with the 

spatula, 

4. Lift the mini-slump cone vertically upward smoothly, 

# 
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5. Use the calipers to measure the spread of the paste once the paste has stopped flowing 

(take the average of three diameter readings in different directions), and 

6. Calculate the %Flow according to: 

%Mow = 100(^-D)/D Equation A-6 

where S is the spread of the paste (mm) and D is the bottom diameter inside the mini-slump 

cone (mm). 
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Figure A-4 Comparison of mini-slump test results with rheological parameters 
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In the present study, the mini-slump cone test was performed in addition to the paste 

rheology test for different kinds of cement paste. The results showed that, as expected, 

cement paste with higher w/c would show higher flow percentage. 

The comparison between flow percentage from the mini-slump cone test and the rheological 

parameters were also made. Results as shown in Figure A-4 indicate that the flow percentage 

from the mini-slump cone test can by some means be correlated to both viscosity and yield 

stress of cement paste, which indicates that when the mini-slump cone test is properly 

performed; the test result can be used to reflect the rheology behavior of the cement paste. 

Previous research by the author indicated that the flow from the mini-slump cone test have 

very strong correlations with the viscosity of the cement paste. This phenomenon was 

demonstrated clearly when different chemical admixtures were added, because the behavior 

of the paste is significantly different when different admixtures are added. However, in 

cement pastes with just different w/c, this difference cannot be clearly observed. This part of 

the research will not be described further in this dissertation. 
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APPENDIX IV. MODIFIED MORTAR FLOW TABLE TEST 

The flow percentage of mortar was measured by the flow table test according to ASTM 

C1437, where the flow was determined by the spread diameter from a standard sample at 

certain amount of drops (25 drops) of flow table (Figure A-5). The spread diameter generally 

increases as the flow table drops, which is cause by the vibration generated from the drop 

which can overcome the yield stress inside mortar mixture. In general, a larger flow 

percentage indicated a better flowability of mortar. 

The flow table test was original designed to determine the water content needed for a cement 

paste sample to obtain a given flow spread of 110+5 %. The test is performed with a standard 

flow table after the table drops 25 times. In the present research, a modified flow test was 

used. Instead of keeping the flow constant by varying the water content, the w/c and the s/c 

were change according to the design for each series of tests, and the resulting flows were 

then measured. The mortar sample was placed on the same flow table and subjected to 25 

drops, and then the spread diameter of the sample was measured. The flowability of the 

mortar was expressed as a flow percentage - the percentage of the spread diameter over the 

original bottom diameter of the sample. Since the flow table has a limited diameter, some of 

the mortar with good flowability will flow off the flow table after fewer than 25 drops. 

(a) Beginning of test (b) End of test 

Figure A-5 Flow table test 
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ASTM STD Sand 

-*-S/C=3, w/c=0.50 
-*-S/C=3, w/c=0.52 
-A-S/C=3, w/c=0.48 
~*-S/C=1, w/c=0.50 

160 

-A-S/C=1, w/c=0.47 
-0-S/C=11 w/c=0.45 

0 
10 

Number of drops 

100 

Figure A-6 Number of drops versus flow percentage of flow table test (adopted from Hu and Wang, 2005) 

According to the previous research of the author (Figure A-6), the flow percentages have a 

linear relationship with drop numbers in a certain range using a logarithm scale. A series of 

tests using standard sand with different fine aggregate content and different w/c were 

performed. According to the study of the relationship between drop number and flow 

percentage over 40 batches of different mortar as shown in Figure A-7, a relationship as 

shown in the following equation can be obtained through regression: 

where t is the drop number of flow table, F25 is the flow percentage of mortar at 25 drops, 

and Ft is the flow percentage of mortar at t drops. This flow table calibration curve as shown 

in Figure A-6 has a very high R square value of 0.98 and statistical analysis showed that the 

relationship is statistically significant. 

F25 =Ft +46.779(ln25-ln0 Equation A-7 
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Figure A-7 Flow percentages for different drops number 

The calibration of the flow table tests showed that the number of drops in the flow table test 

have a strong correlation with flow percentage. This relationship can be used to estimate the 

flow percentage value when the flowability is very high (flow percentage larger than 150%, 

which can not be measure through a regular flow table test). In the test of mortar with high 

flowability, which can be only performed less than 25 drops, the flow percentage of mortar 

was measured before the mortar flows out from the flow table. The flow number was then 

recorded, and the flow percentage calculated according to the above equation. This modified 

flow table test had been successfully applied to study the effect of w/c, content, type, size and 

gradation of fine aggregate on mortar workability (Hu and Wang, 2005). 

F26=Ft* 46.779(jn25-lnt) 
R2 = 0.9815 

: : 

i i i i 
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Table A-l Mortar rheology test results at s/c=l* 

Riversand Limestone 

Sand w/c 1 TO Flow % Sand w/c 77 TO Flow % 

S100 0.40 2.22 144.7 126 LI 00 0.40 2.80 164.7 113 

S100 0.45 1.48 95.9 145 L100 0.45 1.80 115.2 132 
S100 0.50 0.96 55.5 161 L100 0.50 0.90 56.0 149 

S50 0.35 4.12 161.9 106 L50 0.36 4.92 160.7 108 
S50 0.40 2.25 122.0 134 L50 0.41 2.44 121.9 129 
S50 0.45 1.60 88.5 147 L50 0.46 1.69 79.4 143 

S50 0.50 1.23 58.5 149 L30 0.35 4.75 180.3 117 

S30 0.35 4.87 183.3 101 L30 0.40 2.74 132.7 132 
S30 0.40 2.86 161.5 133 L30 0.45 1.81 83.0 153 

S30 0.45 1.72 92.8 149 L16 0.35 3.46 161.7 116 

S16 0.35 3.79 149.0 124 L16 0.40 2.35 110.0 141 

S16 0.40 2.83 116.7 141 L16 0.45 1.59 71.7 153 

S16 0.45 1.74 69.7 149 L8 0.35 3.39 170.0 111 

S8 0.30 5.23 248.8 78 L8 0.40 2.74 89.9 138 
S8 0.35 3.18 123.7 104 L8 0.45 1.62 68.0 153 

S8 0.40 2.60 80.8 119 

G1 0.35 3.90 158.4 136 
G1 0.40 2.45 109.0 140 

G1 0.45 1.65 66.6 162 
G2 0.35 3.58 150.9 119 

G2 0.40 2.21 101.8 145 

G2 0.45 1.66 65.9 157 

G3 0.35 3.18 137.4 129 
G3 0.40 2.12 95.4 141 

G3 0.45 1.56 66.0 158 
G4 0.35 3.20 165.1 118 

G4 0.40 2.29 111.4 135 

G4 0.45 1.47 65.1 154 

* Yield stress (%) with the unit of Pa, viscosity (//) with the unit of Pa S 
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Table A-2 Mortar rheology test results at s/c=2* 

Riversand Limestone 

Sand w/c 7 To Flow % Sand w/c 7 TO Flow % 

S100 0.46 2.80 173.6 88 L100 0.50 2.40 152.7 88 
S100 0.51 1.92 129.3 121 L100 0.55 1.96 116.8 109 

S100 0.56 1.40 68.2 138 L100 0.60 1.56 101.6 135 

S100 0.61 0.82 41.2 158 L50 0.51 2.36 140.8 115 

S50 0.41 2.44 226.2 77 L50 0.56 1.64 77.2 139 

S50 0.46 2.33 122.3 116 L50 0.61 1.01 44.0 156 

S50 0.51 1.68 89.7 146 L30 0.45 2.43 157.1 88 
S50 0.56 0.98 51.5 143 L30 0.50 1.75 99.3 125 

S30 0.40 3.70 220.2 64 L30 0.55 1.17 59.6 141 

S30 0.45 1.96 155.5 131 L16 0.46 2.19 139.5 95 

S30 0.50 1.46 91.0 131 L16 0.51 1.44 76.2 126 

S30 0.55 0.94 52.9 147 L16 0.56 0.83 59.6 146 

S16 0.36 3.86 241.0 81 L8 0.41 3.41 131.7 89 
S16 0.41 3.83 189.5 116 L8 0.46 1.93 100.7 120 
S16 0.46 2.10 113.7 144 L8 0.51 1.23 55.6 135 

S16 0.51 1.59 77.9 144 

S8 0.36 4.53 203.9 87 

S8 0.41 2.97 122.0 125 

S8 0.46 1.92 92.2 141 

S8 0.51 1.29 71.1 150 

G1 0.40 2.25 165.6 119 

G1 0.45 1.81 85.7 137 

G1 0.50 1.03 48.0 155 

G2 0.40 2.35 181.7 113 

G2 0.45 1.99 105.7 138 
G2 0.50 1.16 52.7 153 

G3 0.40 2.74 168.1 114 

G3 0.45 1.82 98.5 143 

G3 0.50 1.19 50.9 150 

G4 0.40 2.75 155.9 118 

G4 0.45 1.72 87.8 140 

G4 0.50 1.26 53.0 149 

STD 0.45 2.22 100.0 129 
STD 0.50 1.30 56.7 140 

STD 0.55 0.80 34.8 155 

* Yield stress (%) with the unit of Pa, viscosity (77) with the unit of Pa S 
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Table A-3 Mortar rheology test results at s/c=3* 

Riversand Limestone 

Sand w/c T) TO Flow % Sand w/c V To Flow % 

S100 0.61 0.09 0.0 53 L100 0.66 2.28 182.8 92 

S100 0.66 0.31 9.0 81 L100 0.71 2.05 94.6 104 

S100 0.71 1.30 29.5 121 L100 0.78 1.80 104.7 114 

S50 0.56 1.33 53.8 70 L50 0.56 0.57 34.5 46 

S50 0.61 1.24 32.2 104 L50 0.61 1.75 107.2 76 

S50 0.66 1.23 35.2 137 L50 0.66 1.89 98.8 98 
S30 0.46 0.34 14.0 49 L30 0.56 2.39 172.7 53 
S30 0.51 1.98 112.3 76 L30 0.61 2.13 135.5 92 
S30 0.56 1.86 81.3 113 L30 0.66 1.52 89.7 112 

S30 0.61 1.30 61.5 132 L16 0.46 0.00 0.0 83 
S16 0.46 3.92 186.3 55 L16 0.51 3.75 174.7 69 
S16 0.51 1.96 123.7 83 L16 0.56 2.07 119.9 70 

S16 0.56 1.29 80.6 121 L8 0.46 NA NA 50 
S8 0.41 4.23 289.6 71 L8 0.51 NA NA 83 
S8 0.46 2.31 162.7 94 L8 0.56 NA NA 105 

S8 0.51 1.23 155.9 126 

G1 0.45 2.11 125.9 128 
G1 0.50 1.46 82.8 130 
G1 0.55 0.91 47.7 155 

G2 0.45 2.20 179.2 92 

G2 0.50 1.94 114.6 134 

G2 0.55 1.31 53.5 149 

G3 0.50 0.67 151.9 94 

G3 0.55 1.59 94.2 122 
G3 0.60 1.06 49.4 149 

G4 0.45 2.64 174.2 86 
G4 0.50 1.61 111.1 121 

G4 0.55 1.24 49.1 142 

* Yield stress ( TQ) with the unit of Pa, viscosity (rj) with the unit of Pa S 
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APPENDIX VI. RHEOLOGY OF MORTAR INSIDE 

CONCRETE 

The concrete in the present study was designed to have three groups of mixtures with the 

same mortar properties (same s/c and w/c for mortar as indicated in Table 3-3). However, as 

shown in Figure A-8, the rheological parameters of mortar sieved through concrete vary 

significantly even within same group, which indicated that the mortar sieved from concrete 

have different rheological properties with the same design mortar mix through standard 

mixing method using the Hobart mixer. The phenomenon is probably caused by the changes 

in the internal structure of mortar through the hand sieving process, which further resulted in 

very different rheology parameters. 
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Figure A-8 Rheological parameters of mortar sieved from concrete 

In the modeling study in chapter 8, the rheology parameters of mortar mixed with the Hobart 

mixer as shown in Table A-4 (all symbols are the same as in Table 3-3), in stead of the 

mortar sieved through concrete were used in the calculation. 

Table A-4 Mortar rheology parameters from standard mortar mixing. 

Mortar Concrete s/c w/c Yield stress (Pa) Viscosity (PaS) 

Ml Mixl, Mix2, and Mix3 1.75 0.45 70.1 1.55 

M2 Mix4, Mix5, and Mix6 2.21 0.45 106.0 1.93 

M3 Mix7, Mix8, and Mix9 2.60 0.50 119.7 1.96 
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APPENDIX VII.  ARTIFICIAL NEURAL NETWORK 

ANALYSIS 

Artificial neural network (ANN) modeling is inspired by the biological structure of neurons 

and the internal operation of human brain. Neural networks consist of multiple layers of 

many interconnected linear or nonlinear processing units operating in parallel fashion. 

Among all artificial neural network architectures, the back-propagation model is the most 

commonly used structure. 

Multi-layer networks use a variety of learning techniques, and the most popular among them 

is back-propagation. The back-propagation model is normally composed of a network of 

elements as shown in Figure A-9. It is most useful for feed-forward networks (networks that 

have no feedback, or simply, that have no connections that loop). The term is an abbreviation 

for "backwards propagation of errors". Back-propagation requires that the transfer function 

used for the units (sometimes called neurons) be differentiable. 

Hidden layers Input layer Output layer 

Figure A-9 Typical neural network element arrangement 

The network shown is known as a fully connected network and every possible connection 

from a node in one layer is made to nodes in the next layer. More complex networks can be 

constructed that contain feedback and have the ability to better model dynamic responses. 
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The equations for calculating terms in the hidden layers and the output layer use non-linear 

relationships (Equation A-8 to A-10 were adopted from Nehdi et al., 2001). The output from 

a given node, j, in a network is given in terms of inputs to that node by: 

In this equation U lj is the current output state of the j-th processing element in layer /, W l
j t  is 

the weight on the connection joining the z'-th element in layer l-l to the j'-th element in layer /, 

O'j is a threshold value assigned to neuron j in layer I, and is the input coming from 

neuron i in layer l-l to neuron j in layer /. 

The net input U lj is then modified by an activation function /to generate an output value Yj 

as given by: 

Yj = f (U'j ) Equation A-9 

where/is traditionally a hyperbolic tangent, sigmoid, or sine function. 

A continuous nonlinear sigmoid function is commonly used as an activated function in ANN 

because it meets the differentiability requirement needed in the back-propagation algorithm, 

and it is represented by: 

f'i = 1—T Equation A-10 
' l + g-("M) 

The weights, W, in the equation can be thought of as modeling memory. They are the 

weighting parameters in the equation system formed by the network and are fitted to allow 

the output of the neural network to produce the proper outputs. Neural networks are trained 

to produce proper outputs. This process sets the weighting parameters Wl and is similar to 

performing a regression analysis. The neural network, formulated in the above fashion, 

creates a set of non-linear equations that are combined in a way in which the parameters can 

Equation A-8 
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be readily found. With this view, a process that can be modeled with a simple linear 

regression analysis should not require the more complex neural network approach. In 

addition, a neural network model is a form of multi-variable non-linear regression analysis. 

In the modeling for mortar rheology, five different factors were selected as the input layer, 

which covered the mix design of mortar and the properties of the aggregate used. The five 

factors used are: s/c, w/c, the fineness modulus, the friction angle and the uncompacted void 

content of fine aggregate. A trial-and-error approach was adopted rules to determine the 

architecture of a back-propagation neural network. After trying several network architectures, 

one hidden layer with three hidden parameters was used for the present study. 

As mentioned in chapter 7, the rheology test has a limitation when the aggregate percentage 

is high because the material can not perform liquid like anymore. In this research, the mortar 

with the calculated excess paste thickness less than zero was not included in the modeling 

analysis. Only 63 sets of data were used in the analysis, instead of all 136 sets. 

Two different ANN analyses were performed in mortar rheology study, one is with all the 63 

set of data as training data, the relative degree of importance of different input factors were 

evaluated through this study as shown in Figure 8-2. In addition to that, another ANN study 

was performed by randomly select around 80% of the data set as training data, and the rest 

20% of the data set as testing data in order to evaluate the validity of the ANN model. The 

actual-to-predicted values of the mortar rheology parameters from these two ANN analyses 

are shown in Figure A-10 (Figure A-10 (a-l), (b-1) and (c-1) showed the results from 

analysis from all data sets, Figure A-10 (a-2), (b-2) and (c-2) showed the results from 

analysis from the selected training and testing data sets). Results showed that a relative high 

R2 value was found through the model, which indicated that this model can capture the 

relationship between the input parameters and output. It was also observed that there was no 

dramatically decrease of the coefficient of correlation by using the testing set to evaluate the 

validity of the model, which indicated that the ANN analysis is appropriate .The model can 

be successful used to predict the rheology of mortar from the original mix design and 

aggregate properties. 



www.manaraa.com

184 

Similar to mortar, six different parameters were selected as the input layer in the modeling 

for concrete rheology, which covered the mix design of concrete and the properties of the 

aggregate used. The six parameters used are: CA%, FA/c, w/c, the fineness modulus, the 

friction angle and the uncompacted void content of coarse aggregate. A trial-and-error 

approach was adopted in selecting the architecture of neural network. After trying several 

network architectures, one hidden layer with three hidden parameters was used for the 

present study. 

Two different ANN analyses were performed in concrete rheology study, one is with all the 

23 set of data as training data, the relative degree of importance of different input factors 

were evaluated through this study as shown in Figure 8-4. In addition to that, another ANN 

study was performed by randomly select around 80% of the data set as training data, and the 

rest 20% of the data set as testing data in order to evaluate the validity of the ANN model. 

The actual-to-predicted values of the concrete rheology parameters from these two ANN 

analyses are shown in Figure A-ll (Figure A-ll (a-l), (b-1) and (c-1) showed the results 

from analysis from all data sets, Figure A-ll (a-2), (b-2) and (c-2) showed the results from 

analysis from the selected training and testing data set). Results showed that a relative high 

R2 value was found through the model, which indicated that this model can capture the 

relationship between the input parameters and output. It was also observed that although the 

coefficient of correlation by using the testing set to evaluate the validity of the model 

decrease, consider the relative small testing set and training set, the model is considered to be 

acceptable. The model still has potential to be used to predict the rheology of concrete from 

the original mix design and aggregate properties. 

Results from the ANN analysis of the mortar and concrete rheology study showed that the 

purpose of evaluating the relative importance degree of different factors on mortar and 

concrete rheology was fulfilled. The ANN analysis can be successfully used to evaluate the 

degree of importance of different factors related to mix design and material properties on 

mortar and concrete rheology. The analysis in this section also indicated that ANN has 

potential be used to design concrete with desirable rheology properties, because it can make 

predictions directly from the mix design, which might be very helpful in practical use. The 
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designer can modify the mix design or aggregate gradation according to the desire 

workability parameters through this tool. The ANN model considered almost all of the 

parameters which might affect the rheology of concrete, including the mix design and 

aggregate properties, factors that were not considered by most of the other models described 

in Chapter 2. However, the size of the data set for using in the ANN analysis is still relative 

small, which limited the validity of the model. A successful ANN model still requires 

additional experiment data, especially material with aggregates of different properties from 

various sources. 
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Figure A-10 Prediction of mortar rheological properties using ANN analysis 
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APPENDIX VIII .  REGRESSION ANALYSIS 

Regression analysis was used as major tool to establish the rheology model based on the 

developed theoretical parameters. Some commonly-used statistical regression analysis terms 

are briefly described below (all equations and figures in this section are after Lyman, 1993 

and Kleinbaum et al., 1998). 

(1). Least Squares Method 

The lease squares method is used to determine the best fitting line that minimizes the sum of 

the squares of the length of the vertical line segments drawn from the observed data points to 

the fitted line as shown in Figure A-12. The smaller the deviation of observed values, the 

closer the best fitting line to the data. 

% 

Figure A-12 Deviation of observed points from the fitting regression line 

(adopted from Kleinbaum et al., 1998) 

The sum of the square of distance is given by: 

X Œ  ~ Y ' Y  -  A » - A  X i f  E q u a t i o n  A l l  
i=i ;=i 

In this equation 7, is the observed value, Yj is the estimated value at Xt based on the fitted 

line, /?„ is the intercept of the fitted line and /?, is the slope of the fitted line. 

Y 

Y, î 
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The least square solution is to find the /?0 and /?, for which the sum of square is a minimum 

value. This minimum sum of the squares is called the sum of squares due to errors (or sum of 

square error, S SE). As long as these two parameters are determined, the best fitting line is 

fixed. 

(2) Correlation Coefficient 

The correlation coefficient is used to estimate how two random variables are linearly 

associated in a sample. The sample correlation coefficient is defined as: 

Here r is a dimensionless quantity with values range from -1 to 1. The larger the \r\ is, the 

stronger the relation is. If r is 1 or -1, it means the linear association between X and Y is 

perfect. An |r| value range from 0.85 to 1 is generally agreed to indicate a strong relationship, 

while 0.5<|r|<0.SJ means moderate relationship and \r\<0.5 indicates weak relationship. 

R2 value measures the strength of the linear relationship between X and Y. If X is not used at 

all, the best predictor in this case would be the sample mean of the Y (7). The sum of the 

squares of deviations associated with the Y can be given by: 

2 ( X , - X ) ( Y , ~ Y )  
i=1 

Equation A-12 

J( x , - z ) 2 X ( K , - y ) 2  

i=\ 

Equation A-13 

If the X is used to predict the Y, the sum of square due to errors is given by: 

SSE = ̂ ^(Y[ - Yi)2 Equation A-14 
/-i 

The square of the sample correlation coefficient R2 is given: 



www.manaraa.com

190 

R = Equation A-15 

Therefore, R2 gives the proportionate reduction in the sum of the squares of vertical 

deviations due to the use of the fitted line Y = J30- /?, X instead of Y. The larger the value 

of R2, the greater the reduction in SSE is and the stronger the linear relationship between X 

and Y. For example, a R2 = 0.80 means 80% of the variation in Y can be explained with the 

h e l p  o f X .  

(3). Test for significance 

In order to take the uncertainties of using a sample into account and to assess whether the 

fitted line helps to predict Y, it is necessary to test statistical hypotheses about the unknown 

parameters in the fitted line. 

For the fitted line Y = J30- /?, X, the estimators /?0 and /?, are normally distributed with 

respect to fio and Pi. These estimators together with the estimates of their variance can be 

used to test statistics based on the t distribution as shown in Figure A-13. 

t  distribution 

P = Prob(T<f under H 

0 7 =  t  

(Calculated value 
of test statistic) 

Figure A-13 Explanation of the definition of p-value 

In the present study, the null hypothesis is that the mean of the estimator is zero, and the 

significance level is 0.05. More specifically, to test the null hypothesis H0: Pi=0, the test 

statistic used in expressed as: 
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P, t = —— Equation A-16 

A 

In this equation S, is the standard error of the estimated parameter /?, , and t is the t-ratio of 
A 

test hypotheses. The t-ratio of estimators pQ can be calculated in similar way. 

The test statistic has the f distribution with n-2 degrees of freedom when Ho is true. Another 

generally used parameter is F-ratio, which is the traditional test statistic to test that the term 

effect is zero. Base on the calculated t-ratio or F-ratio, the p-value can be found from the 

table of percentiles of the t distribution or F distribution. If there is no relationship between X 

and Y, the probability of getting a similar sample is equal to p-value. The p-value can be used 

to determine whether to reject or accept the null hypothesis. If the p-value is smaller than 

0.05, the null hypothesis can generally been rejected, which means the Xdoes help to predict 

Y in 0.05 significance level. 

The ANOVA table conducted using JMP statistic analysis software was used to provide 

overall summary of multiple regression analysis in the present study, which gives the 

information of the significance level of different parameters used in modeling. 

(4). Stepwise Method 

In the present study, several possible parameters can be used in the statistical model. The 

stepwise regression method was conducted in this dissertation using JMP statistic analysis 

software, which gives a stepwise regression for a single continuous or categorical _y and all 

types of effects. The significance level of choosing the parameter used in present research is 

0.05. The model has all possible statistical significant parameters (with a p-value less than 

0.05) and the highest R2 value was chosen as the final models in stepwise regression analysis. 
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(5). Linear Regression use Logarithm Parameters 

The significance analysis generally can only be performed in linear regression, which is not 

suitable for the present modeling study. A linear regression using logarithm parameters was 

therefore applied. The logarithm values of the input and output parameters instead of the 

original values were used in the regression analysis. The following equation can be obtained: 

In 7 = A + B In + C In X2 Equation A-17 

In this equation Xj and X2 are the estimated terms and A, B, and C are the parameter estimates 

from regression analysis. Equation A-17 can be transformed into a regression equation as 

shown in Equation A-18, while the significance level of different parameters Xs and X2 can 

still be calculated according to the linear regression analysis. 

Equation A-18 
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